Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 82019 01 09.
Article in English | MEDLINE | ID: mdl-30624206

ABSTRACT

The integrated stress response (ISR) attenuates the rate of protein synthesis while inducing expression of stress proteins in cells. Various insults activate kinases that phosphorylate the GTPase eIF2 leading to inhibition of its exchange factor eIF2B. Vanishing White Matter (VWM) is a neurological disease caused by eIF2B mutations that, like phosphorylated eIF2, reduce its activity. We show that introduction of a human VWM mutation into mice leads to persistent ISR induction in the central nervous system. ISR activation precedes myelin loss and development of motor deficits. Remarkably, long-term treatment with a small molecule eIF2B activator, 2BAct, prevents all measures of pathology and normalizes the transcriptome and proteome of VWM mice. 2BAct stimulates the remaining activity of mutant eIF2B complex in vivo, abrogating the maladaptive stress response. Thus, 2BAct-like molecules may provide a promising therapeutic approach for VWM and provide relief from chronic ISR induction in a variety of disease contexts.


Subject(s)
Brain Diseases/etiology , Eukaryotic Initiation Factor-2B/metabolism , Stress, Psychological/complications , White Matter/pathology , Animals , Astrocytes/pathology , Brain Diseases/pathology , Brain Diseases/prevention & control , Chronic Disease , Eukaryotic Initiation Factor-2B/genetics , Humans , Male , Mice , Mutation , Nerve Tissue Proteins/metabolism , Oligodendroglia/pathology , Phosphorylation , Protein Biosynthesis , Proteome , Weight Gain
2.
Xenobiotica ; 49(6): 718-733, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30044681

ABSTRACT

Mavacamten is a small molecule modulator of cardiac myosin designed as an orally administered drug for the treatment of patients with hypertrophic cardiomyopathy. The current study objectives were to assess the preclinical pharmacokinetics of mavacamten for the prediction of human dosing and to establish the potential need for clinical pharmacokinetic studies characterizing drug-drug interaction potential. Mavacamten does not inhibit CYP enzymes, but at high concentrations relative to anticipated therapeutic concentrations induces CYP2B6 and CYP3A4 enzymes in vitro. Mavacamten showed high permeability and low efflux transport across Caco-2 cell membranes. In human hepatocytes, mavacamten was not a substrate for drug transporters OATP, OCT and NTCP. Mavacamten was determined to have minimal drug-drug interaction risk. In vitro mavacamten metabolite profiles included phase I- and phase II-mediated metabolism cross-species. Major pathways included aromatic hydroxylation (M1), aliphatic hydroxylation (M2); N-dealkylation (M6), and glucuronidation of the M1-metabolite (M4). Reaction phenotyping revealed CYPs 2C19 and 3A4/3A5 predominating. Mavacamten demonstrated low clearance, high volume of distribution, long terminal elimination half-life and excellent oral bioavailability cross-species. Simple four-species allometric scaling led to predicted plasma clearance, volume of distribution and half-life of 0.51 mL/min/kg, 9.5 L/kg and 9 days, respectively, in human.


Subject(s)
Benzylamines/pharmacokinetics , Uracil/analogs & derivatives , Animals , Benzylamines/chemistry , Benzylamines/metabolism , Caco-2 Cells , Cardiac Myosins/metabolism , Cardiomyopathy, Hypertrophic/drug therapy , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Dogs , Drug Interactions , Hepatocytes/metabolism , Humans , Macaca fascicularis , Male , Metabolic Clearance Rate , Mice, Inbred ICR , Microsomes, Liver , Rats, Sprague-Dawley , Uracil/chemistry , Uracil/metabolism , Uracil/pharmacokinetics
3.
J Proteomics ; 96: 173-83, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24262153

ABSTRACT

Secreted and plasma membrane glycoproteins are considered excellent candidates for disease biomarkers. Herein we describe the identification of secreted and plasma membrane glycoproteins that are differentially expressed among a family of three breast cancer cell lines that models the progression of breast cancer. Using two-dimensional liquid chromatography-tandem mass spectrometry we identified more than 40 glycoproteins that were differentially expressed in either the premalignant (MCF10AT) or the fully malignant (MCF10CA1a) cell lines of this model system. Comparative analysis revealed that the differentially expressed breast cancer progression-associated glycoproteins were among the most highly expressed in the malignant (MCF10CA1a) breast cancer cell line; a subset of these was detected only in the malignant line; and others were detected in the malignant line at levels 25 to 50 times greater than in the benign (MCF10A) line. Using the results from this model cell system as a guide, we then carried out glycoproteomic analyses of normal and cancerous breast tissue lysates. Eleven of the glycoproteins differentially expressed in the breast cell lines were identified in the tissue lysates. Among these glycoproteins, collagen alpha-1 (XII) chain was expressed at dramatically higher (~10-fold) levels in breast cancer than in normal tissue. BIOLOGICAL SIGNIFICANCE: Identifying glycoproteins differentially expressed during cancer progression results in information on the biological processes and key pathways associated with cancer. In addition, new hypotheses and potential biomarkers result from these glycoproteomic studies. Our glycoproteomic analysis of this model of breast cancer provides a roadmap for future experimental interventions to further tease apart critical components of tumor progression.


Subject(s)
Biomarkers, Tumor/biosynthesis , Breast Neoplasms/metabolism , Collagen Type XII/biosynthesis , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/biosynthesis , Cell Line, Tumor , Disease Progression , Female , Humans
4.
Glycobiology ; 23(11): 1240-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23918816

ABSTRACT

Breast cancer cell lines express fewer transmembrane and secreted glycoproteins than nonmalignant ones. The objective of these experiments was to characterize the changes in the expression of several hundred glycoproteins quantitatively. Secreted and cell-surface glycoproteins were isolated using a glycoprotein capture protocol and then identified by tandem mass spectrometry. Glycoproteins expressed by a group of cell lines originating from malignant tumors of the breast were compared with those expressed by a nonmalignant set. The average number of spectral counts (proportional to relative protein abundance) and the total number of glycopeptides in the malignant samples were reduced to about two-thirds of the level in the nonmalignant samples. Most glycoproteins were expressed at a different level in the malignant samples, with nearly as many increasing as decreasing. The glycoproteins with reduced expression accounted for a larger change in spectral counts, and hence for the net loss of spectral counts in the malignant lines. Similar results were found when the glycoproteins were studied via identified glycosylation sites only, or through identified sites together with non-glycopeptides. The overall reduction is largely due to the loss of integrins, laminins and other proteins that form or interact with the basement membrane.


Subject(s)
Glycoproteins/metabolism , Membrane Proteins/metabolism , Transcription, Genetic , Amino Acid Sequence , Breast Neoplasms , Cell Line, Tumor , Consensus Sequence , Female , Gene Dosage , Glycoproteins/chemistry , Glycoproteins/genetics , Glycosylation , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Protein Processing, Post-Translational , Proteome/chemistry , Proteome/genetics , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...