Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2993, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582763

ABSTRACT

Bacteriophage therapy is a promising approach to address antimicrobial infections though questions remain regarding the impact of the immune response on clinical effectiveness. Here, we develop a mouse model to assess phage treatment using a cocktail of five phages from the Myoviridae and Siphoviridae families that target Vancomycin-Resistant Enterococcus gut colonization. Phage treatment significantly reduces fecal bacterial loads of Vancomycin-Resistant Enterococcus. We also characterize immune responses elicited following administration of the phage cocktail. While minimal innate responses are observed after phage administration, two rounds of treatment induces phage-specific neutralizing antibodies and accelerate phage clearance from tissues. Interestingly, the myophages in our cocktail induce a more robust neutralizing antibody response than the siphophages. This anti-phage immunity reduces the effectiveness of the phage cocktail in our murine model. Collectively, this study shows phage-specific immune responses may be an important consideration in the development of phage cocktails for therapeutic use.


Subject(s)
Bacteriophages , Vancomycin-Resistant Enterococci , Humans , Animals , Mice , Bacteriophages/physiology , Vancomycin/pharmacology , Disease Models, Animal , Myoviridae/physiology , Anti-Bacterial Agents/pharmacology
2.
J Bacteriol ; 205(12): e0032423, 2023 12 19.
Article in English | MEDLINE | ID: mdl-37971230

ABSTRACT

IMPORTANCE: This study is the first example of C. difficile growing with siderophores as the sole iron source and describes the characterization of the ferric hydroxamate uptake ABC transporter (FhuDBGC). This transporter shows specificity to the siderophore ferrichrome. While not required for pathogenesis, this transporter highlights the redundancy in iron acquisition mechanisms that C. difficile uses to compete for iron during an infection.


Subject(s)
Clostridioides difficile , Siderophores , Iron/metabolism , Ferrichrome/metabolism , Clostridioides difficile/metabolism , Clostridioides , Membrane Transport Proteins
3.
Appl Microbiol Biotechnol ; 107(12): 4069-4077, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37148337

ABSTRACT

Characterization of live biotherapeutic product (LBP) batches typically includes a measurement of viability, such as colony forming units (CFU). However, strain-specific CFU enumeration assays can be complicated by the presence of multiple organisms in a single product with similar growth requirements. To overcome specific challenges associated with obtaining strain-specific CFU values from multi-strain mixtures, we developed a method combining mass spectrometry-based colony identification with a traditional CFU assay. This method was assessed using defined consortia made from up to eight bacterial strains. Among four replicate batches of an eight-strain mixture, observed values differed from expected values by less than 0.4 log10 CFU among all strains measured (range of differences, -0.318 to + 0.267). The average difference between observed and expected values was + 0.0308 log10 CFU, with 95% limits of agreement from -0.347 to 0.408 (Bland-Altman analysis). To estimate precision, a single batch of eight-strain mixture was assayed in triplicate by three different users, for a total of nine measurements. Pooled standard deviation values ranged from 0.067 to 0.195 log10 CFU for the eight strains measured, and user averages did not differ significantly. Leveraging emerging mass-spectrometry-based colony identification tools, a novel method for simultaneous enumeration and identification of viable bacteria from mixed-strain consortia was developed and tested. This study demonstrates the potential for this approach to generate accurate and consistent measurements of up to eight bacterial strains simultaneously and may provide a flexible platform for future refinements and modifications. KEY POINTS: • Enumeration of live biotherapeutics is essential for product quality and safety. • Conventional CFU counting may not differentiate between strains in microbial products. • This approach was developed for direct enumeration of mixed bacterial strains simultaneously.


Subject(s)
Bacteria , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Colony Count, Microbial
4.
Lancet Microbe ; 2(6): e259-e266, 2021 06.
Article in English | MEDLINE | ID: mdl-33821247

ABSTRACT

BACKGROUND: Faecal shedding of SARS-CoV-2 has raised concerns about transmission through faecal microbiota transplantation procedures. Validation parameters of authorised tests for SARS-CoV-2 RNA detection in respiratory samples are described in product labelling, whereas the published methods for SARS-CoV-2 detection from faecal samples have not permitted a robust description of the assay parameters. We aimed to develop and validate a test specifically for detection of SARS-CoV-2 in human stool. METHODS: In this validation study, we evaluated performance characteristics of a reverse transcriptase real-time PCR (RT-rtPCR) test for detection of SARS-CoV-2 in human stool specimens by spiking stool with inactivated SARS-CoV-2 material. A modified version of the US Centers for Disease Control and Prevention RT-rtPCR SARS-CoV-2 test was used for detection of viral RNA. Analytical sensitivity was evaluated in freshly spiked stool by testing two-fold dilutions in replicates of 20. Masked samples were tested by a second laboratory to evaluate interlaboratory reproducibility. Short-term (7-day) stability of viral RNA in stool samples was assessed with four different stool storage buffers (phosphate-buffered saline, Cary-Blair medium, Stool Transport and Recovery [STAR] buffer, and DNA/RNA Shield) kept at -80°C, 4°C, and ambient temperature (approximately 21°C). We also tested clinical stool and anal swab specimens from patients who were SARS-CoV-2 positive by nasopharyngeal testing. FINDINGS: The lower limit of detection of the assay was found to be 3000 viral RNA copies per g of original stool sample, with 100% detection across 20 replicates assessed at this concentration. Analytical sensitivity was diminished by approximately two times after a single freeze-thaw cycle at -80°C. At 100 times the limit of detection, spiked samples were generally stable in all four stool storage buffers tested for up to 7 days, with maximum changes in mean threshold cycle values observed at -80°C storage in Cary-Blair medium (from 29·4 [SD 0·27] at baseline to 30·8 [0·17] at day 7; p<0·0001), at 4°C storage in DNA/RNA Shield (from 28·5 [0·15] to 29·8 [0·09]; p=0·0019), and at ambient temperature in STAR buffer (from 30·4 [0·24] to 32·4 [0·62]; p=0·0083). 30 contrived SARS-CoV-2 samples were tested by a second laboratory and were correctly identified as positive or negative in at least one of two rounds of testing. Additionally, SARS-CoV-2 RNA was detected using this assay in the stool and anal swab specimens of 11 of 23 individuals known to be positive for SARS-CoV-2. INTERPRETATION: This is a sensitive and reproducible assay for detection of SARS-CoV-2 RNA in human stool, with potential uses in faecal microbiota transplantation donor screening, sewage monitoring, and further research into the effects of faecal shedding on the epidemiology of the COVID-19 pandemic. FUNDING: National Institute of Allergy and Infectious Diseases, US National Institutes of Health; Center for Biologics Evaluation and Research, US Food and Drug Administration.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Pandemics , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2/genetics
5.
PLoS One ; 14(9): e0223025, 2019.
Article in English | MEDLINE | ID: mdl-31560732

ABSTRACT

Clostridium difficile (Cd) infection (CDI) typically occurs after antibiotic usage perturbs the gut microbiota. Mucosa-associated invariant T cells (MAIT) are found in the gut and their development is dependent on Major histocompatibility complex-related protein 1 (MR1) and the host microbiome. Here we were interested in determining whether the absence of MR1 impacts resistance to CDI. To this end, wild-type (WT) and MR1-/- mice were treated with antibiotics and then infected with Cd spores. Surprisingly, MR1-/- mice exhibited resistance to Cd colonization. 16S rRNA gene sequencing of feces revealed inherent differences in microbial composition. This colonization resistance was transferred from MR1-/- to WT mice via fecal microbiota transplantation, suggesting that MR1-dependent factors influence the microbiota, leading to CDI susceptibility.


Subject(s)
Clostridium Infections/immunology , Disease Resistance/genetics , Gastrointestinal Microbiome/immunology , Histocompatibility Antigens Class I/genetics , Minor Histocompatibility Antigens/genetics , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Cefoperazone/administration & dosage , Cefoperazone/adverse effects , Clostridium Infections/etiology , Clostridium Infections/microbiology , Clostridium Infections/therapy , Disease Models, Animal , Disease Resistance/immunology , Fecal Microbiota Transplantation , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Histocompatibility Antigens Class I/immunology , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Mice , Mice, Knockout , Minor Histocompatibility Antigens/immunology , Mucosal-Associated Invariant T Cells/immunology , Specific Pathogen-Free Organisms
6.
mSphere ; 3(5)2018 09 05.
Article in English | MEDLINE | ID: mdl-30185513

ABSTRACT

Clostridium difficile is a Gram-positive obligate anaerobe that forms spores in order to survive for long periods in the unfavorable environment outside a host. C. difficile is the leading cause of nosocomial infectious diarrhea worldwide. C. difficile infection (CDI) arises after a patient treated with broad-spectrum antibiotics ingests infectious spores. The first step in C. difficile pathogenesis is the metabolic reactivation of dormant spores within the gastrointestinal (GI) tract through a process known as germination. In this work, we aim to elucidate the specific conditions and the location within the GI tract that facilitate this process. Our data suggest that C. difficile germination occurs through a two-step biochemical process that is regulated by pH and bile salts, amino acids, and calcium present within the GI tract. Maximal germination occurs at a pH ranging from 6.5 to 8.5 in the terminal small intestine prior to bile salt and calcium reabsorption by the host. Germination can be initiated by lower concentrations of germinants when spores are incubated with a combination of bile salts, calcium, and amino acids, and this synergy is dependent on the availability of calcium. The synergy described here allows germination to proceed in the presence of inhibitory bile salts and at physiological concentrations of germinants, effectively decreasing the concentrations of nutrients required to initiate an essential step of pathogenesis.IMPORTANCEClostridium difficile is an anaerobic spore-forming human pathogen that is the leading cause of nosocomial infectious diarrhea worldwide. Germination of infectious spores is the first step in the development of a C. difficile infection (CDI) after ingestion and passage through the stomach. This study investigates the specific conditions that facilitate C. difficile spore germination, including the following: location within the gastrointestinal (GI) tract, pH, temperature, and germinant concentration. The germinants that have been identified in culture include combinations of bile salts and amino acids or bile salts and calcium, but in vitro, these function at concentrations that far exceed normal physiological ranges normally found in the mammalian GI tract. In this work, we describe and quantify a previously unreported synergy observed when bile salts, calcium, and amino acids are added together. These germinant cocktails improve germination efficiency by decreasing the required concentrations of germinants to physiologically relevant levels. Combinations of multiple germinant types are also able to overcome the effects of inhibitory bile salts. In addition, we propose that the acidic conditions within the GI tract regulate C. difficile spore germination and could provide a biological explanation for why patients taking proton pump inhibitors are associated with increased risk of developing a CDI.


Subject(s)
Bile Acids and Salts/metabolism , Calcium/metabolism , Clostridioides difficile/physiology , Intestine, Small/microbiology , Spores, Bacterial/physiology , Amino Acids/metabolism , Animals , Bacterial Proteins/metabolism , Calcium Signaling , Hydrogen-Ion Concentration , Intestine, Small/metabolism , Mice , Mice, Inbred C57BL
7.
Infect Immun ; 86(8)2018 08.
Article in English | MEDLINE | ID: mdl-29866903

ABSTRACT

Clostridium difficile is an anaerobic, spore-forming bacterium capable of colonizing the gastrointestinal tract of humans following disruption of the normal microbiota, typically from antibiotic therapy for an unrelated infection. With approximately 500,000 confirmed infections leading to 29,000 deaths per year in the United States, C. difficile infection (CDI) is an urgent public health threat. We previously determined that C. difficile survives in up to 3% oxygen. Low levels of oxygen are present in the intestinal tract, with the higher concentrations being associated with the epithelial cell surface. Additionally, antibiotic treatment, the greatest risk factor for CDI, increases the intestinal oxygen concentration. Therefore, we hypothesized that the C. difficile genome encodes mechanisms for survival during oxidative stress. Previous data have shown that cysteine desulfurases involved in iron-sulfur cluster assembly are involved in protecting bacteria from oxidative stress. In this study, deletion of a putative cysteine desulfurase (Cd630_12790/IscS2) involved in the iron-sulfur cluster (Isc) system caused a severe growth defect in the presence of 2% oxygen. Additionally, this mutant delayed colonization in a conventional mouse model of CDI and failed to colonize in a germfree model, which has higher intestinal oxygen levels. These data imply an undefined role for this cysteine desulfurase in protecting C. difficile from low levels of oxygen in the gut.


Subject(s)
Carbon-Sulfur Lyases/metabolism , Clostridioides difficile/enzymology , Clostridioides difficile/physiology , Microbial Viability/drug effects , Oxygen/metabolism , Oxygen/toxicity , Animals , Carbon-Sulfur Lyases/genetics , Clostridioides difficile/growth & development , Clostridium Infections/microbiology , Clostridium Infections/pathology , Disease Models, Animal , Gastrointestinal Tract/microbiology , Gene Deletion , Mice, Inbred C57BL , Oxidative Stress
8.
Pathog Dis ; 76(2)2018 03 01.
Article in English | MEDLINE | ID: mdl-29390060

ABSTRACT

Clostridium difficile (Cd) is an anaerobic, spore-forming bacterium capable of colonizing the gastrointestinal tract of humans. Colonization usually occurs following antibiotic-induced disruption of the host microbiota, which also leads to an increase in oxygen within the gastrointestinal tract. We sought to understand how Cd responds to this microaerophilic condition that is likely experienced within the host. Transcriptome profiling showed differential regulation of genes involved in sugar metabolism, pyruvate metabolism and stress responses. These data provide insight into potential mechanisms of Cd adaptation to the host environment and should lead to the elucidation unknown mechanisms of Cd oxygen resistance and pathogenesis.


Subject(s)
Anaerobiosis , Clostridioides difficile/drug effects , Clostridioides difficile/growth & development , Gene Expression Profiling , Oxygen/toxicity , Adaptation, Physiological , Humans , Stress, Physiological
9.
Pathog Dis ; 76(2)2018 03 01.
Article in English | MEDLINE | ID: mdl-29390127

ABSTRACT

Clostridium difficile (Cd) is the leading cause of antibiotic-associated diarrhea. During an infection, Cd must compete with both the host and other commensal bacteria to acquire iron. Iron is essential for many cell processes, but it can also cause damage if allowed to form reactive hydroxyl radicals. In all organisms, levels of free iron are tightly regulated as are processes utilizing iron molecules. Genome-wide transcriptional analysis of Cd grown in iron-depleted conditions revealed significant changes in expression of genes involved in iron transport, metabolism and virulence. These data will aid future studies examining Cd colonization and the requirements for growth in vivo during an infection.


Subject(s)
Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Gene Expression Regulation, Bacterial , Iron/metabolism , Gene Expression Profiling , Membrane Transport Proteins/biosynthesis , Stress, Physiological , Trace Elements/metabolism , Virulence Factors/biosynthesis
10.
J Bacteriol ; 200(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29358498

ABSTRACT

Extracytoplasmic function (ECF) σ factors are a diverse family of alternative σ factors that allow bacteria to sense and respond to changes in the environment. σV is an ECF σ factor found primarily in low-GC Gram-positive bacteria and is required for lysozyme resistance in several opportunistic pathogens. In the absence of lysozyme, σV is inhibited by the anti-σ factor RsiV. In response to lysozyme, RsiV is degraded via the process of regulated intramembrane proteolysis (RIP). RIP is initiated by cleavage of RsiV at site 1, which allows the intramembrane protease RasP to cleave RsiV within the transmembrane domain at site 2 and leads to activation of σV Previous work suggested that RsiV is cleaved by signal peptidase at site 1. Here we demonstrate in vitro that signal peptidase is sufficient for cleavage of RsiV only in the presence of lysozyme and provide evidence that multiple Bacillus subtilis signal peptidases can cleave RsiV in vitro This cleavage is dependent upon the concentration of lysozyme, consistent with previous work that showed that binding to RsiV was required for σV activation. We also show that signal peptidase activity is required for site 1 cleavage of RsiV in vivo Thus, we demonstrate that signal peptidase is the site 1 protease for RsiV.IMPORTANCE Extracytoplasmic function (ECF) σ factors are a diverse family of alternative σ factors that respond to extracellular signals. The ECF σ factor σV is present in many low-GC Gram-positive bacteria and induces resistance to lysozyme, a component of the innate immune system. The anti-σ factor RsiV inhibits σV activity in the absence of lysozyme. Lysozyme binds RsiV, which initiates a proteolytic cascade leading to destruction of RsiV and activation of σV This proteolytic cascade is initiated by signal peptidase, a component of the general secretory system. We show that signal peptidase is necessary and sufficient for cleavage of RsiV at site 1 in the presence of lysozyme. This report describes a role for signal peptidase in controlling gene expression.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Muramidase/metabolism , Serine Endopeptidases/metabolism , Sigma Factor/metabolism , Signal Transduction , Bacillus subtilis/genetics , Bacillus subtilis/physiology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Membrane Proteins/genetics , Muramidase/genetics , Protein Domains , Proteolysis , Serine Endopeptidases/genetics , Sigma Factor/genetics , Stress, Physiological
11.
PLoS Pathog ; 13(7): e1006443, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28704538

ABSTRACT

Clostridium difficile (C. difficile) is an anaerobic gram-positive pathogen that is the leading cause of nosocomial bacterial infection globally. C. difficile infection (CDI) typically occurs after ingestion of infectious spores by a patient that has been treated with broad-spectrum antibiotics. While CDI is a toxin-mediated disease, transmission and pathogenesis are dependent on the ability to produce viable spores. These spores must become metabolically active (germinate) in order to cause disease. C. difficile spore germination occurs when spores encounter bile salts and other co-germinants within the small intestine, however, the germination signaling cascade is unclear. Here we describe a signaling role for Ca2+ during C. difficile spore germination and provide direct evidence that intestinal Ca2+ coordinates with bile salts to stimulate germination. Endogenous Ca2+ (released from within the spore) and a putative AAA+ ATPase, encoded by Cd630_32980, are both essential for taurocholate-glycine induced germination in the absence of exogenous Ca2+. However, environmental Ca2+ replaces glycine as a co-germinant and circumvents the need for endogenous Ca2+ fluxes. Cd630_32980 is dispensable for colonization in a murine model of C. difficile infection and ex vivo germination in mouse ileal contents. Calcium-depletion of the ileal contents prevented mutant spore germination and reduced WT spore germination by 90%, indicating that Ca2+ present within the gastrointestinal tract plays a critical role in C. difficile germination, colonization, and pathogenesis. These data provide a biological mechanism that may explain why individuals with inefficient intestinal calcium absorption (e.g., vitamin D deficiency, proton pump inhibitor use) are more prone to CDI and suggest that modulating free intestinal calcium is a potential strategy to curb the incidence of CDI.


Subject(s)
Bile Acids and Salts/metabolism , Calcium/metabolism , Clostridioides difficile/metabolism , Clostridium Infections/microbiology , Intestine, Small/microbiology , Spores, Bacterial/growth & development , Animals , Bacterial Proteins/metabolism , Calcium Signaling , Clostridioides difficile/genetics , Clostridioides difficile/growth & development , Clostridium Infections/metabolism , Humans , Intestine, Small/metabolism , Mice , Mice, Inbred C57BL , Spores, Bacterial/genetics , Spores, Bacterial/metabolism
12.
PLoS Genet ; 12(9): e1006287, 2016 09.
Article in English | MEDLINE | ID: mdl-27602573

ABSTRACT

σ factors provide RNA polymerase with promoter specificity in bacteria. Some σ factors require activation in order to interact with RNA polymerase and transcribe target genes. The Extra-Cytoplasmic Function (ECF) σ factor, σV, is encoded by several Gram-positive bacteria and is specifically activated by lysozyme. This activation requires the proteolytic destruction of the anti-σ factor RsiV via a process of regulated intramembrane proteolysis (RIP). In many cases proteases that cleave at site-1 are thought to directly sense a signal and initiate the RIP process. We previously suggested binding of lysozyme to RsiV initiated the proteolytic destruction of RsiV and activation of σV. Here we determined the X-ray crystal structure of the RsiV-lysozyme complex at 2.3 Å which revealed that RsiV and lysozyme make extensive contacts. We constructed RsiV mutants with altered abilities to bind lysozyme. We find that mutants that are unable to bind lysozyme block site-1 cleavage of RsiV and σV activation in response to lysozyme. Taken together these data demonstrate that RsiV is a receptor for lysozyme and binding of RsiV to lysozyme is required for σV activation. In addition, the co-structure revealed that RsiV binds to the lysozyme active site pocket. We provide evidence that in addition to acting as a sensor for the presence of lysozyme, RsiV also inhibits lysozyme activity. Thus we have demonstrated that RsiV is a protein with multiple functions. RsiV inhibits σV activity in the absence of lysozyme, RsiV binds lysozyme triggering σV activation and RsiV inhibits the enzymatic activity of lysozyme.


Subject(s)
Bacterial Proteins/chemistry , Molecular Docking Simulation , Muramidase/chemistry , Sigma Factor/chemistry , Bacillus/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Muramidase/metabolism , Mutation , Protein Binding , Proteolysis , Sigma Factor/genetics , Sigma Factor/metabolism
13.
PLoS Genet ; 10(10): e1004643, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25275625

ABSTRACT

σ factors endow RNA polymerase with promoter specificity in bacteria. Extra-Cytoplasmic Function (ECF) σ factors represent the largest and most diverse family of σ factors. Most ECF σ factors must be activated in response to an external signal. One mechanism of activation is the stepwise proteolytic destruction of an anti-σ factor via Regulated Intramembrane Proteolysis (RIP). In most cases, the site-1 protease required to initiate the RIP process directly senses the signal. Here we report a new mechanism in which the anti-σ factor rather than the site-1 protease is the sensor. We provide evidence suggesting that the anti-σ factor RsiV is the bacterial receptor for the innate immune defense enzyme, lysozyme. The site-1 cleavage site is similar to the recognition site of signal peptidase and cleavage at this site is required for σV activation in Bacillus subtilis. We reconstitute site-1 cleavage in vitro and demonstrate that it requires both signal peptidase and lysozyme. We demonstrate that the anti-σ factor RsiV directly binds to lysozyme and muramidase activity is not required for σV activation. We propose a model in which the binding of lysozyme to RsiV activates RsiV for signal peptidase cleavage at site-1, initiating proteolytic destruction of RsiV and activation of σV. This suggests a novel mechanism in which conformational change in a substrate controls the cleavage susceptibility for signal peptidase. Thus, unlike other ECF σ factors which require regulated intramembrane proteolysis for activation, the sensor for σV activation is not the site-1 protease but the anti-σ factor.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Muramidase/metabolism , Sigma Factor/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Calorimetry/methods , Clostridioides difficile/metabolism , Endopeptidases/metabolism , Enterococcus faecalis/metabolism , Gene Expression Regulation, Bacterial , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muramidase/genetics , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Sigma Factor/genetics
14.
J Bacteriol ; 195(14): 3135-44, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23687273

ABSTRACT

During growth in the environment, bacteria encounter stresses which can delay or inhibit their growth. To defend against these stresses, bacteria induce both resistance and repair mechanisms. Many bacteria regulate these resistance mechanisms using a group of alternative σ factors called extracytoplasmic function (ECF) σ factors. ECF σ factors represent the largest and most diverse family of σ factors. Here, we demonstrate that the activation of a member of the ECF30 subfamily of ECF σ factors, σ(V) in Bacillus subtilis, is controlled by the proteolytic destruction of the anti-σ factor RsiV. We will demonstrate that the degradation of RsiV and, thus, the activation of σ(V) requires multiple proteolytic steps. Upon exposure to the inducer lysozyme, the extracellular domain of RsiV is removed by an unknown protease, which cleaves at site 1. This cleavage is independent of PrsW, the B. subtilis site 1 protease, which cleaves the anti-σ factor RsiW. Following cleavage by the unknown protease, the N-terminal portion of RsiV requires further processing, which requires the site 2 intramembrane protease RasP. Our data indicate that the N-terminal portion of RsiV from amino acid 1 to 60, which lacks the extracellular domain, is constitutively degraded unless RasP is absent, indicating that RasP cleavage is constitutive. This suggests that the regulatory step in RsiV degradation and, thus, σ(V) activation are controlled at the level of the site 1 cleavage. Finally, we provide evidence that increased resistance to lysozyme decreases σ(V) activation. Collectively, these data provide evidence that the mechanism for σ(V) activation in B. subtilis is controlled by regulated intramembrane proteolysis (RIP) and requires the site 2 protease RasP.


Subject(s)
Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Peptide Hydrolases/metabolism , Sigma Factor/metabolism , Muramidase/metabolism , Proteolysis
15.
J Bacteriol ; 193(22): 6215-22, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21856855

ABSTRACT

Bacteria encounter numerous environmental stresses which can delay or inhibit their growth. Many bacteria utilize alternative σ factors to regulate subsets of genes required to overcome different extracellular assaults. The largest group of these alternative σ factors are the extracytoplasmic function (ECF) σ factors. In this paper, we demonstrate that the expression of the ECF σ factor σ(V) in Bacillus subtilis is induced specifically by lysozyme but not other cell wall-damaging agents. A mutation in sigV results in increased sensitivity to lysozyme killing, suggesting that σ(V) is required for lysozyme resistance. Using reverse transcription (RT)-PCR, we show that the previously uncharacterized gene yrhL (here referred to as oatA for O-acetyltransferase) is in a four-gene operon which includes sigV and rsiV. In quantitative RT-PCR experiments, the expression of oatA is induced by lysozyme stress. Lysozyme induction of oatA is dependent upon σ(V). Overexpression of oatA in a sigV mutant restores lysozyme resistance to wild-type levels. This suggests that OatA is required for σ(V)-dependent resistance to lysozyme. We also tested the ability of lysozyme to induce the other ECF σ factors and found that only the expression of sigV is lysozyme inducible. However, we found that the other ECF σ factors contributed to lysozyme resistance. We found that sigX and sigM mutations alone had very little effect on lysozyme resistance but when combined with a sigV mutation resulted in significantly greater lysozyme sensitivity than the sigV mutation alone. This suggests that sigV, sigX, and sigM may act synergistically to control lysozyme resistance. In addition, we show that two ECF σ factor-regulated genes, dltA and pbpX, are required for lysozyme resistance. Thus, we have identified three independent mechanisms which B. subtilis utilizes to avoid killing by lysozyme.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Muramidase/metabolism , Sigma Factor/genetics , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Muramidase/pharmacology , Sigma Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...