Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Parkinsonism Relat Disord ; 125: 107019, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38861796

ABSTRACT

INTRODUCTION: Declines in instrumental activities of daily living (IADLs) have been proposed as a prodromal marker of Parkinson's disease (PD). The Cleveland Clinic Virtual Reality Shopping (CC-VRS) platform combines an omnidirectional treadmill with a virtual reality headset to create a virtual grocery store that a user physically walks through and completes a shopping task. The primary aim of this project was to determine the known-group validity of the CC-VRS platform in discriminating IADL performance and to characterize specific motor and cognitive declines responsible for PD-related IADL impairments. METHODS: Sixteen individuals with PD and 15 healthy adults completed traditional motor, cognitive, and IADL assessments and the CC-VRS task. Group differences were evaluated using Welch's t-test. RESULTS: There were no between-group differences in traditional performance measures of motor, cognitive, or IADL function. Regarding CC-VRS performance, participants in the PD group completed the task significantly slower than controls (690 vs. 523 sec, respectively). Participants with PD spent 25 % more time walking and turning and were stopped 46 % longer than controls. Average gait speed when viewing the shopping list, a measure of dual-task performance, was significantly slower in the PD group compared to controls (0.26 vs. 0.17 m/s, respectively). CONCLUSION: Unlike traditional performance measures of motor, cognitive, and IADL function, the CC-VRS discriminated participants with PD from healthy older adults. For the PD group, motor and dual-task declines contributed to diminished CC-VRS performance. Identifying underlying contributors to IADL declines supports using ecological assessments, such as the CC-VRS, for the routine clinical evaluation of IADLs.

2.
Mil Med ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38422491

ABSTRACT

INTRODUCTION: Variability in return-to-duty (RTD) decision-making following mild traumatic brain injury (mTBI) is a threat to troop readiness. Current RTD assessments lack military-specific tasks and quantitative outcomes to inform stakeholders of a service member's (SM) capacity to successfully perform military duties. Augmented reality (AR), which places digital assets in a user's physical environment, provides a technological vehicle to deliver military-relevant tasks to a SM to be used in the RTD decision-making process. In addition to delivering digital content, AR headsets provide biomechanical data that can be used to assess the integrity of the central nervous system in movement control following mTBI. The objective of this study was to quantify cognitive and motor performance on an AR rifle qualification test (RQT) in a group of neurologically healthy military SMs. MATERIALS AND METHODS: Data were collected from 111 healthy SMs who completed a basic (single-task) and complex (dual-task) RQT with a simulated M4 rifle. The complex scenario required the SM to perform the RQT while simultaneously answering arithmetic problems. Position data from the AR headset were used to capture postural sway, and the built-in microphone gathered responses to the arithmetic problems. RESULTS: There were no differences in the number of targets hit, trigger pull reaction time, and transition time from kneeling to standing between the basic and complex scenarios. A significant worsening in postural sway following kneel-to-stand transition was observed in the complex scenario. The average reaction time to answer the arithmetic problems was nearly 2 times slower than the average reaction time to pull the trigger to a displayed target in the complex scenario. CONCLUSION: The complex scenario provoked dual-task interference in SMs as evidenced by worsening postural sway and reaction time differences between the cognitive and motor tasks. An AR RQT provides objective and quantitative outcomes during a military-specific task. Greater precision in evaluating cognitive and motor performance during a military-relevant task has the potential to aid in the detection and management of SMs and their RTD following MTBI.

3.
J Neuroeng Rehabil ; 21(1): 29, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38388883

ABSTRACT

BACKGROUND: Omnidirectional treadmills (ODTs) offer a promising solution to the virtual reality (VR) locomotion problem, which describes the mismatch between visual and somatosensory information and contributes to VR sickness. However, little is known about how walking on ODTs impacts the biomechanics of gait. This project aimed to compare overground and ODT walking and turning in healthy young adults. METHODS: Fifteen young adults completed forward walk, 180° turn, and 360° turn tasks under three conditions: (1) overground, (2) on the Infinadeck ODT in a virtual environment without a handrail, and (3) on the ODT with a handrail. Kinematic data for all walking trials were gathered using 3D optical motion capture. RESULTS: Overall, gait speed was slower during ODT walking than overground. When controlling for gait speed, ODT walking resulted in shorter steps and greater variability in step length. There were no significant differences in other spatiotemporal metrics between ODT and overground walking. Turning on the ODT required more steps and slower rotational speeds than overground turns. The addition of the stability handrail to the ODT resulted in decreased gait variability relative to the ODT gait without the handrail. CONCLUSION: Walking on an ODT resembles natural gait patterns apart from slower gait speed and shorter step length. Slower walking and shorter step length are likely due to the novelty of physically navigating a virtual environment which may result in a more conservative approach to gait. Future work will evaluate how older adults and those with neurological disease respond to ODT walking.


Subject(s)
Gait , Walking , Young Adult , Humans , Aged , Locomotion , Walking Speed , Exercise Test/methods , Biomechanical Phenomena
4.
Mil Med ; 188(Suppl 6): 67-74, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37948246

ABSTRACT

INTRODUCTION: Mild traumatic brain injury (mTBI) is prevalent in service members (SMs); however, there is a lack of consensus on the appropriate approach to return to duty (RTD). Head-mounted augmented reality technology, such as the HoloLens 2, can create immersive, salient environments to more effectively evaluate relevant military task performance. The Troop Readiness Evaluation with Augmented Reality Return-to-Duty (READY) platform was developed to objectively quantify cognitive and motor performance during military-specific activities to create a comprehensive approach to aid in mTBI detection and facilitate appropriate RTD. The aim of this project was to detail the technical development of the Troop READY platform, the outcomes, and its potential role in the aiding detection and RTD decision-making post mTBI. The secondary aim included evaluating the safety, feasibility, and SM usability of the Troop READY platform. MATERIALS AND METHODS: The Troop READY platform comprises three assessment modules of progressing complexity: (1) Static and Dynamic Mobility, (2) Rifle Qualification Test, and (3) Small Unit Operations Capacity-Room Breach/Clearing Exercise. The modules were completed by 137 active duty SMs. Safety was assessed through monitoring of adverse events. Feasibility was assessed using the self-directed module completion rate. Usability was measured using the Systems Usability Scale. RESULTS: No adverse events occurred. Completion rates of the three modules ranged from 98 to 100%. In terms of usability, the mean Systems Usability Scale score of all participants was 83.92 (13.95), placing the Troop READY platform in the good-to-excellent category. Objective motor and cognitive outcomes were generated for each module. CONCLUSION: The Troop READY platform delivers self-directed, salient assessment modules to quantify single-task, dual-task, and unit-based performance in SMs. The resultant data provide insight into SM performance through objective outcomes and identify specific areas of executive or motor function that may be slow to recover following mTBI.


Subject(s)
Augmented Reality , Brain Concussion , Military Personnel , Humans , Brain Concussion/diagnosis , Brain Concussion/therapy , Brain Concussion/complications , Return to Work , Consensus
5.
Health Soc Care Community ; 30(6): e6122-e6134, 2022 11.
Article in English | MEDLINE | ID: mdl-36214623

ABSTRACT

Participation in supervised, laboratory-based aerobic exercise protocols holds promise in slowing the progression of Parkinson's disease (PD). Gaps remain regarding exercise adherence and effectiveness of laboratory protocols translated to community-based programs. The aim of the project was to monitor exercise behaviour and evaluate its effect on disease progression over a 6 month period in people with PD participating in a community-based Pedalling for Parkinson's (PFP) cycling program. A pragmatic, observational study design was utilised to monitor exercise behaviour at five community sites. The Movement Disorders Society-Unified Parkinson's disease Rating Scale Motor III (MDS-UPDRS-III) and other motor and non-motor outcomes were gathered at enrollment and following 6 months of exercise. Attendance, heart rate, and cadence data were collected for each exercise session. On average, people with PD (N = 41) attended nearly 65% of the offered PFP classes. Average percent of age-estimated maximum heart rate was 69.3 ± 11.9%; average cadence was 74.9 ± 9.0 rpms. The MDS-UPDRS III significantly decreased over the 6-month exercise period (37.2 ± 11.7 to 33.8 ± 11.7, p = 0.001) and immediate recall significantly improved (42.3 ± 12.4 to 47.1 ± 12.7, p = 0.02). Other motor and non-motor metrics did not exhibit significant improvement. Participants who attended ~74% or more of available PFP classes experienced the greatest improvement in MDS-UPDRS III scores; of those who attended less than 74% of classes, cycling greater than or equal to 76 rpms lead to  improvement. Attendance and exercise intensity data indicated that a laboratory-based exercise protocol can be successfully translated to a community setting. Consistent attendance and pedalling at a relatively high cadence may be key variables to PD symptom mitigation. Improvement in clinical ratings coupled with lack of motor and non-motor symptom progression over 6 months provides rationale for further investigation of the real-world, disease-modifying potential of aerobic exercise for people with PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/therapy , Exercise
SELECTION OF CITATIONS
SEARCH DETAIL
...