Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Protoc Plant Biol ; 5(1): e20105, 2020 03.
Article in English | MEDLINE | ID: mdl-32150352

ABSTRACT

Milkweeds have ecological significance for insect herbivores that rely on them as hosts for either part of or the entirety of their life cycles. Interesting interactions, some of which are not completely understood, have evolved over time. To develop these species as models to elucidate the interplay with insect herbivores, we established Agrobacterium tumefaciens-mediated transformation approaches for Asclepias hallii (Hall's milkweed), A. syriaca (common milkweed), and A. tuberosa (butterflyweed). The method is based on infection of stem internodal explants, which were more amenable to transformation than leaf explants. We found that addition of freshly prepared dithiothreitol was critical to prevent browning of stem explants. Depending on the species, the time from infection to the regeneration of transgenic lines ranges from 2 to 4 months. Transformation efficiency for A. hallii was 9%, whereas efficiencies for A. syriaca and A. tuberosa were 6% and 13%, respectively. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Agrobacterium tumefaciens-mediated transformation of Asclepias internodal stem explants Basic Protocol 2: Preparation of Agrobacterium glycerol stocks containing gene constructs.


Subject(s)
Apocynaceae , Asclepias , Agrobacterium tumefaciens , Herbivory , Plant Leaves
2.
Mol Phylogenet Evol ; 63(2): 278-90, 2012 May.
Article in English | MEDLINE | ID: mdl-22230029

ABSTRACT

Salamanders of the North American plethodontid genus Plethodon are important model organisms in a variety of studies that depend on a phylogenetic framework (e.g., chemical communication, ecological competition, life histories, hybridization, and speciation), and consequently their systematics has been intensively investigated over several decades. Nevertheless, we lack a synthesis of relationships among the species. In the analyses reported here we use new DNA sequence data from the complete nuclear albumin gene (1818 bp) and the 12s mitochondrial gene (355 bp), as well as published data for four other genes (Wiens et al., 2006), up to a total of 6989 bp, to infer relationships. We relate these results to past systematic work based on morphology, allozymes, and DNA sequences. Although basal relationships show a strong consensus across studies, many terminal relationships remain in flux despite substantial sequencing and other molecular and morphological studies. This systematic instability appears to be a consequence of contemporaneous bursts of speciation in the late Miocene and Pliocene, yielding many closely related extant species in each of the four eastern species groups. Therefore we conclude that many relationships are likely to remain poorly resolved in the face of additional sequencing efforts. On the other hand, the current classification of the 45 eastern species into four species groups is supported. The Plethodon cinereus group (10 species) is the sister group to the clade comprising the other three groups, but these latter groups (Plethodon glutinosus [28 species], Plethodon welleri [5 species], and Plethodon wehrlei [2 species]) probably diverged from each other at approximately the same time.


Subject(s)
Phylogeny , Salamandridae/classification , Salamandridae/genetics , Albumins/genetics , Animals , Base Sequence , DNA, Mitochondrial/genetics , Evolution, Molecular , Genes, Mitochondrial , Genetic Speciation , Mitochondria/genetics , North America , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...