Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; : e3456, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494903

ABSTRACT

Biopharmaceutical manufacture is transitioning from batch to integrated and continuous biomanufacturing (ICB). The common framework for most ICB, potentially enables a global biomanufacturing ecosystem utilizing modular and multi-function manufacturing equipment. Integrating unit operation hardware and software from multiple suppliers, complex supply chains enabled by multiple customized single-use flow paths, and large volume buffer production/storage make this ICB vision difficult to achieve with commercially available manufacturing equipment. Thus, we developed SymphonX™, a downstream processing skid with advanced buffer management capabilities, a single disposable generic flow path design that provides plug-and-play flexibility across all downstream unit operations and a single interface to reduce operational risk. Designed for multi-product and multi-process cGMP facilities, SymphonX™ can perform stand-alone batch processing or ICB. This study utilized an Apollo™ X CHO-DG44 mAb-expressing cell line in a steady-state perfusion bioreactor, harvesting product continuously with a cell retention device and connected SymphonX™ purification skids. The downstream process used the same chemistry (resins, buffer composition, membrane composition) as our historical batch processing platform, with SymphonX™ in-line conditioning and buffer concentrates. We used surge vessels between unit operations, single-column chromatography (protein A, cation and anion exchange) and two-tank batch virus inactivation. After the first polishing step (cation exchange), we continuously pooled product for 6 days. These 6 day pools were processed in batch-mode from anion exchange to bulk drug substance. This manufacturing scale proof-of-concept ICB produced 0.54 kg/day of drug substance with consistent product quality attributes and demonstrated successful bioburden control for unit-operations undergoing continuous operation.

2.
Clin Cancer Res ; 15(17): 5323-37, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19723653

ABSTRACT

The purpose of the National Cancer Institute pilot project to prioritize cancer antigens was to develop a well-vetted, priority-ranked list of cancer vaccine target antigens based on predefined and preweighted objective criteria. An additional aim was for the National Cancer Institute to test a new approach for prioritizing translational research opportunities based on an analytic hierarchy process for dealing with complex decisions. Antigen prioritization involved developing a list of "ideal" cancer antigen criteria/characteristics, assigning relative weights to those criteria using pairwise comparisons, selecting 75 representative antigens for comparison and ranking, assembling information on the predefined criteria for the selected antigens, and ranking the antigens based on the predefined, preweighted criteria. Using the pairwise approach, the result of criteria weighting, in descending order, was as follows: (a) therapeutic function, (b) immunogenicity, (c) role of the antigen in oncogenicity, (d) specificity, (e) expression level and percent of antigen-positive cells, (f) stem cell expression, (g) number of patients with antigen-positive cancers, (h) number of antigenic epitopes, and (i) cellular location of antigen expression. None of the 75 antigens had all of the characteristics of the ideal cancer antigen. However, 46 were immunogenic in clinical trials and 20 of them had suggestive clinical efficacy in the "therapeutic function" category. These findings reflect the current status of the cancer vaccine field, highlight the possibility that additional organized efforts and funding would accelerate the development of therapeutically effective cancer vaccines, and accentuate the need for prioritization.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Neoplasms/immunology , Program Development , Clinical Trials as Topic , Humans , National Cancer Institute (U.S.) , Neoplasms/therapy , Pilot Projects , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...