Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Mater ; 3(1)2022.
Article in English | MEDLINE | ID: mdl-36406238

ABSTRACT

The airborne nature of coronavirus transmission makes it critical to develop new barrier technologies that can simultaneously reduce aerosol and viral spread. Here, we report nanostructured membranes with tunable thickness and porosity for filtering coronavirus-sized aerosols, combined with antiviral enzyme functionalization that can denature spike glycoproteins of the SARS-CoV-2 virus in low-hydration environments. Thin, asymmetric membranes with subtilisin enzyme and methacrylic functionalization show more than 98.90% filtration efficiency for 100-nm unfunctionalized and protein-functionalized polystyrene latex aerosol particles. Unfunctionalized membranes provided a protection factor of 540 ± 380 for coronavirus-sized particle, above the Occupational Safety and Health Administration's standard of 10 for N95 masks. SARS-CoV-2 spike glycoprotein on the surface of coronavirus-sized particles was denatured in 30 s by subtilisin enzyme-functionalized membranes with 0.02-0.2% water content on the membrane surface.

2.
Int J Hydrogen Energy ; 46(11): 7821-7835, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-35185266

ABSTRACT

A biological photoinduced fermentation process provides an alternative to traditional hydrogen productions. In this study, biohydrogen production was investigated at near IR region coupled to a near-field enhancement by silica-core gold-shell nanoparticles (NPs) over a range of acetate concentrations (5-40 mM) and light intensities (11-160 W/m2). The kinetic data were modeled using modified Monod equations containing light intensity effects. The yields of H2 and CO2 produced per acetate were determined as 2.31 mol-H2/mol-Ac and 0.83 mol-CO2/mol-Ac and increased to 4.38 mmol-H2/mmol-Ma and 2.62 mmol-CO2/mmol-Ma when malate was used. Maximum increases in H2 and CO2 productions by 115% and 113% were observed by adding NPs without affecting the bacterial growth rates (6.1-8.2 mg-DCM/L/hour) while the highest hydrogen production rate was determined as 0.81 mmol/L/hour. Model simulations showed that the energy conversion efficiency increased with NPs concentration but decreased with the intensity. Complete hydrogenation application was demonstrated with toxic 2-chlorobiphenyl using Pd catalysts.

3.
J Biomed Opt ; 21(8): 80501, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27533437

ABSTRACT

We report a low-cost compact diffuse speckle contrast flowmeter (DSCF) consisting of a small laser diode and a bare charge-coupled-device (CCD) chip, which can be used for contact measurements of blood flow variations in relatively deep tissues (up to ∼ 8 mm). Measurements of large flow variations by the contact DSCF probe are compared to a noncontact CCD-based diffuse speckle contrast spectroscopy and a standard contact diffuse correlation spectroscopy in tissue phantoms and a human forearm. Bland­Altman analysis shows no significant bias with good limits of agreement among these measurements: 96.5%±2.2% (94.4% to 100.0%) in phantom experiments and 92.8% in the forearm test. The relatively lower limit of agreement observed in the in vivo measurements (92.8%) is likely due to heterogeneous reactive responses of blood flow in different regions/volumes of the forearm tissues measured by different probes. The low-cost compact DSCF device holds great potential to be broadly used for continuous and longitudinal monitoring of blood flow alterations in ischemic/hypoxic tissues, which are usually associated with various vascular diseases.


Subject(s)
Forearm , Hemodynamics , Laser-Doppler Flowmetry/instrumentation , Regional Blood Flow , Humans , Laser-Doppler Flowmetry/economics , Phantoms, Imaging , Spectrum Analysis
4.
Microsc Microanal ; 20(2): 376-84, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24589298

ABSTRACT

The introduction of gases, such as water vapor, into an environmental scanning electron microscope is common practice to assist in the imaging of insulating or biological materials. However, this capability may also be exploited to introduce, or form, liquid phase precursors for electron-beam-induced deposition. In this work, the authors report the deposition of silver (Ag) and copper (Cu) structures using two different cell-less in situ deposition methods--the first involving the in situ hydration of solid precursors and the second involving the insertion of liquid droplets using a capillary style liquid injection system. Critically, the inclusion of surfactants is shown to drastically improve pattern replication without diminishing the purity of the metal deposits. Surfactants are estimated to reduce the droplet contact angle to below ~10°.

SELECTION OF CITATIONS
SEARCH DETAIL
...