Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Main subject
Publication year range
1.
Sci Adv ; 10(6): eadh5272, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335288

ABSTRACT

Studies of laser-heated materials on femtosecond timescales have shown that the interatomic potential can be perturbed at sufficiently high laser intensities. For gold, it has been postulated to undergo a strong stiffening leading to an increase of the phonon energies, known as phonon hardening. Despite efforts to investigate this behavior, only measurements at low absorbed energy density have been performed, for which the interpretation of the experimental data remains ambiguous. By using in situ single-shot x-ray diffraction at a hard x-ray free-electron laser, the evolution of diffraction line intensities of laser-excited Au to a higher energy density provides evidence for phonon hardening.

2.
Sci Rep ; 10(1): 16837, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33033373

ABSTRACT

We report the time-resolved femtosecond evolution of the K-shell X-ray emission spectra of iron during high intensity illumination of X-rays in a micron-sized focused hard X-ray free electron laser (XFEL) beam. Detailed pulse length dependent measurements revealed that rapid spectral energy shift and broadening started within the first 10 fs of the X-ray illumination at intensity levels between 1017 and 1018 W cm-2. We attribute these spectral changes to the rapid evolution of high-density photoelectron mediated secondary collisional ionization processes upon the absorption of the incident XFEL radiation. These fast electronic processes, occurring at timescales well within the typical XFEL pulse durations (i.e., tens of fs), set the boundary conditions of the pulse intensity and sample parameters where the widely-accepted 'probe-before-destroy' measurement strategy can be adopted for electronic-structure related XFEL experiments.

3.
Opt Lett ; 44(10): 2582-2585, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31090737

ABSTRACT

We present the concept and a prototypical implementation of a compact x-ray split-delay system that is capable of performing continuous on-the-fly delay scans over a range of ∼10 ps with sub-100 nanoradian pointing stability. The system consists of four channel-cut silicon crystals, two of which have gradually varying gap sizes from intentional 5 deg asymmetric cuts. The delay adjustment is realized by linear motions of these two monolithic varying-gap channel cuts, where the x-ray beam experiences pairs of anti-parallel reflections, and thus becomes less sensitive in output beam pointing to motion imperfections of the translation stages. The beam splitting is accomplished by polished crystal edges. A high degree of mutual coherence between the two branches at the focus is observed by analyzing small-angle coherent x-ray scattering patterns. We envision a wide range of applications including single-shot x-ray pulse temporal diagnostics, studies of high-intensity x-ray-matter interactions, as well as measurement of dynamics in disordered material systems using split-pulse x-ray photon correlation spectroscopy.

4.
J Synchrotron Radiat ; 25(Pt 1): 20-25, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29271746

ABSTRACT

The performance of a hard X-ray split-and-delay optical (SDO) system with a wavefront division scheme was investigated at the hard X-ray free-electron laser facility SACLA. For the wavefront division, beam splitters made of edge-polished perfect Si(220) crystals were employed. We characterized the beam properties of the SDO system, and investigated its capabilities for beam manipulation and diagnostics. First, it was confirmed that shot-to-shot non-invasive diagnostics of pulse energies for both branches in the SDO system was feasible. Second, nearly ideal and identical focal profiles for both branches were obtained with a spot size of ∼1.5 µm in full width at half-maximum. Third, a spatial overlap of the two focused beams with a sub-µm accuracy was achieved by fine tuning of the SDO system. Finally, a reliable tunability of the delay time between two pulses was confirmed. The time interval was measured with an X-ray streak camera by changing the path length of the variable-delay branch. Errors from the fitted line were evaluated to be as small as ±0.4 ps over a time range of 60 ps.

5.
IUCrJ ; 4(Pt 6): 728-733, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29123674

ABSTRACT

Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD) between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL) pulses by capturing single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ±â€…0.7 fs, which agrees with that expected from the single-shot spectral information. This is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femto-seconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.

6.
Rev Sci Instrum ; 87(10): 103701, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27802688

ABSTRACT

We describe the phase-contrast imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same time reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 fs. It was specifically designed for studies relevant to high-energy-density science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community.

7.
Faraday Discuss ; 194: 525-536, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27711844

ABSTRACT

We present a multifaceted investigation into the initial photodissociation dynamics of 1,4-diiodobenzene (DIB) following absorption of 267 nm radiation. We combine ultrafast time-resolved photoelectron spectroscopy and X-ray scattering experiments performed at the Linac Coherent Light Source (LCLS) to study the initial electronic excitation and subsequent rotational alignment, and interpret the experiments in light of Complete Active Space Self-Consistent Field (CASSCF) calculations of the excited electronic landscape. The initially excited state is found to be a bound 1B1 surface, which undergoes ultrafast population transfer to a nearby state in 35 ± 10 fs. The internal conversion most likely leads to one or more singlet repulsive surfaces that initiate the dissociation. This initial study is an essential and prerequisite component of a comprehensive study of the complete photodissociation pathway(s) of DIB at 267 nm. Assignment of the initially excited electronic state as a bound state identifies the mechanism as predissociative, and measurement of its lifetime establishes the time between excitation and initiation of dissociation, which is crucial for direct comparison of photoelectron and scattering experiments.

8.
Sci Rep ; 5: 11089, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26086176

ABSTRACT

The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

9.
Faraday Discuss ; 171: 81-91, 2014.
Article in English | MEDLINE | ID: mdl-25415842

ABSTRACT

We aim to observe a chemical reaction in real time using gas-phase X-ray diffraction. In our initial experiment at the Linac Coherent Light Source (LCLS), we investigated the model system 1,3-cyclohexadiene (CHD) at very low vapor pressures. This reaction serves as a benchmark for numerous transformations in organic synthesis and natural product biology. Excitation of CHD by an ultraviolet optical pulse initiates an electrocyclic reaction that transforms the closed ring system into the open-chain structure of 1,3,5-hexatriene. We describe technical points of the experimental method and present first results. We also outline an approach to analyze the data involving nonlinear least-square optimization routines that match the experimental observations with predicted diffraction patterns calculated from trajectories for nonadiabatic vibronic wave packets.


Subject(s)
Cyclohexenes/chemistry , X-Ray Diffraction
10.
Sci Rep ; 3: 1633, 2013.
Article in English | MEDLINE | ID: mdl-23567281

ABSTRACT

The emergence of hard X-ray free electron lasers (XFELs) enables new insights into many fields of science. These new sources provide short, highly intense, and coherent X-ray pulses. In a variety of scientific applications these pulses need to be strongly focused. In this article, we demonstrate focusing of hard X-ray FEL pulses to 125 nm using refractive x-ray optics. For a quantitative analysis of most experiments, the wave field or at least the intensity distribution illuminating the sample is needed. We report on the full characterization of a nanofocused XFEL beam by ptychographic imaging, giving access to the complex wave field in the nanofocus. From these data, we obtain the full caustic of the beam, identify the aberrations of the optic, and determine the wave field for individual pulses. This information is for example crucial for high-resolution imaging, creating matter in extreme conditions, and nonlinear x-ray optics.

11.
Rev Sci Instrum ; 82(2): 023108, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21361574

ABSTRACT

We have developed an x-ray beam-position monitor for detecting the radiation properties of an x-ray free electron laser (FEL). It is composed of four PIN photodiodes that detect backscattered x-rays from a semitransparent diamond film placed in the beam path. The signal intensities from the photodiodes are used to compute the beam intensity and position. A proof-of-principle experiment at a synchrotron light source revealed that the error in the beam position is reduced to below 7 µm by using a nanocrystal diamond film prepared by plasma-enhanced chemical vapor deposition. Owing to high dose tolerance and transparency of the diamond film, the monitor is suitable for routine diagnostics of extremely intense x-ray pulses from the FEL.

12.
Phys Rev Lett ; 97(8): 084802, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-17026309

ABSTRACT

An experimental scheme to realize single-shot spectrometry for the diagnostics of x-ray free-electron lasers (XFELs) is presented. The combination of an ultraprecisely figured mirror and a perfect crystal form a simple, high-precision spectrometer that can cover an energy range from a few eV to a hundred eV with high resolution. The application of the spectrometer to determine XFEL pulse widths was investigated theoretically and experimentally. It has been shown that the present system can determine pulse widths from sub-fs to ps in a single shot even for spontaneous radiation. The system can be easily extended to even shorter pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...