Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39005337

ABSTRACT

Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related deaths worldwide, and a large proportion of HCC is attributable to viral causes including hepatitis B (HBV) and C virus (HCV). The pathogenesis of viral-mediated HCC can differ between HBV and HCV, but it is unclear how much these differences influence the tumors' final molecular and immune profiles. Additionally, there are known sex differences in the molecular etiology of HCC, but sex differences have not been explored in the context of viral-mediated HCC. To determine the extent to which the viral status and sex impact the molecular and immune profiles of HCC, we performed differential expression and immune cell deconvolution analyses. We identified a large number of differentially expressed genes unique to the HBV or HCV tumor:tumor-adjacent comparison. Pathway enrichment analyses demonstrated that the changes unique to the HCV tumor:tumor-adjacent tissue were predominated by changes in the immune pathways. Immune cell deconvolution demonstrated that HCV tumor-adjacent tissue had the largest immune cell infiltrate, with no difference in the immune profiles within HBV and HCV tumor samples. We subsequently segregated the differential expression analyses by sex, but demonstrated that the low number of female samples led to an overestimate of differentially expressed genes unique to male tumors. This limitation highlights the importance of additional sampling of female HCC tumors to allow for a more complete analysis of the sex differences in HCC. Overall, this work demonstrates the convergence of HBV- and HCV-mediated HCC on a similar transcriptomic landscape and immune profile despite differences in the surrounding tissue.

2.
bioRxiv ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38405868

ABSTRACT

Challenges in identifying tumor-rejecting neoantigens limit the efficacy of neoantigen vaccines to treat cancers, including cutaneous squamous cell carcinoma (cSCC). A minority of human cSCC tumors shared neoantigens, supporting the need for personalized vaccines. Using a UV-induced mouse cSCC model which recapitulated the mutational signature and driver mutations found in human disease, we found that CD8 T cells constrain cSCC. Two MHC class I neoantigens were identified that constrained cSCC growth. Compared to the wild-type peptides, one tumor-rejecting neoantigen exhibited improved MHC binding and the other had increased solvent accessibility of the mutated residue. Across known neoantigens that do not impact MHC binding, structural modeling of the peptide/MHC complexes indicated that increased solvent accessibility, which will facilitate TCR recognition of the neoantigen, distinguished tumor-rejecting from non-immunogenic neoantigens. This work reveals characteristics of tumor-rejecting neoantigens that may be of considerable importance in identifying optimal vaccine candidates in cSCC and other cancers.

3.
Cancers (Basel) ; 14(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35565329

ABSTRACT

Gamma-interferon-inducible lysosomal thiol reductase (GILT) is critical for MHC class II restricted presentation of multiple melanoma antigens. There is variable GILT protein expression in malignant melanocytes in melanoma specimens. High GILT mRNA expression in melanoma specimens is associated with improved overall survival, before the advent of immune checkpoint inhibitors (ICI). However, the association of GILT in metastatic melanoma with survival in patients treated with ICI and the cell type expressing GILT associated with survival have not been determined. Using RNA sequencing datasets, high GILT mRNA expression in metastatic melanoma specimens was associated with improved progression-free and overall survival in patients treated with ICI. A clinical dataset of metastatic melanoma specimens was generated and annotated with clinical information. Positive GILT immunohistochemical staining in antigen presenting cells and melanoma cells was observed in 100% and 65% of metastatic melanoma specimens, respectively. In the subset of patients treated with ICI in the clinical dataset, high GILT protein expression within melanoma cells was associated with improved overall survival. The association of GILT mRNA and protein expression with survival was independent of cancer stage. These studies support that high GILT mRNA expression in bulk tumor samples and high GILT protein expression in melanoma cells is associated with improved survival in ICI-treated patients. These findings support further investigation of GILT as a biomarker to predict the response to ICI.

4.
Front Oncol ; 12: 836821, 2022.
Article in English | MEDLINE | ID: mdl-35311072

ABSTRACT

Prioritization of immunogenic neoantigens is key to enhancing cancer immunotherapy through the development of personalized vaccines, adoptive T cell therapy, and the prediction of response to immune checkpoint inhibition. Neoantigens are tumor-specific proteins that allow the immune system to recognize and destroy a tumor. Cancer immunotherapies, such as personalized cancer vaccines, adoptive T cell therapy, and immune checkpoint inhibition, rely on an understanding of the patient-specific neoantigen profile in order to guide personalized therapeutic strategies. Genomic approaches to predicting and prioritizing immunogenic neoantigens are rapidly expanding, raising new opportunities to advance these tools and enhance their clinical relevance. Predicting neoantigens requires acquisition of high-quality samples and sequencing data, followed by variant calling and variant annotation. Subsequently, prioritizing which of these neoantigens may elicit a tumor-specific immune response requires application and integration of tools to predict the expression, processing, binding, and recognition potentials of the neoantigen. Finally, improvement of the computational tools is held in constant tension with the availability of datasets with validated immunogenic neoantigens. The goal of this review article is to summarize the current knowledge and limitations in neoantigen prediction, prioritization, and validation and propose future directions that will improve personalized cancer treatment.

6.
Cancers (Basel) ; 14(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35008167

ABSTRACT

There is a need to identify molecular biomarkers of melanoma progression to assist the development of chemoprevention strategies to lower melanoma incidence. Using datasets containing gene expression for dysplastic nevi and melanoma or melanoma arising in a nevus, we performed differential gene expression analysis and regularized regression models to identify genes and pathways that were associated with progression from nevi to melanoma. A small number of genes distinguished nevi from melanoma. Differential expression of seven genes was identified between nevi and melanoma in three independent datasets. C1QB, CXCL9, CXCL10, DFNA5 (GSDME), FCGR1B, and PRAME were increased in melanoma, and SCGB1D2 was decreased in melanoma, compared to dysplastic nevi or nevi that progressed to melanoma. Further supporting an association with melanomagenesis, these genes demonstrated a linear change in expression from benign nevi to dysplastic nevi to radial growth phase melanoma to vertical growth phase melanoma. The genes associated with melanoma progression showed significant enrichment of multiple pathways related to the immune system. This study demonstrates (1) a novel application of bioinformatic approaches to aid clinical trials of melanoma chemoprevention and (2) the feasibility of determining a gene signature biomarker of melanomagenesis.

7.
Front Immunol ; 10: 2799, 2019.
Article in English | MEDLINE | ID: mdl-31849976

ABSTRACT

A low percentage of actinic keratoses progress to develop into cutaneous squamous cell carcinoma. The immune mechanisms that successfully control or eliminate the majority of actinic keratoses and the mechanisms of immune escape by invasive squamous cell carcinoma are not well-understood. Here, we took a systematic approach to evaluate the neoantigens present in actinic keratosis and cutaneous squamous cell carcinoma specimens. We compared the number of mutations, the number of neoantigens predicted to bind MHC class I, and the number of neoantigens that are predicted to bind MHC class I and be recognized by a T cell receptor in actinic keratoses and cutaneous squamous cell carcinomas. We also considered the relative binding strengths to both MHC class I and the T cell receptor in a fitness cost model that allows for a comparison of the immune recognition potential of the neoantigens in actinic keratosis and cutaneous squamous cell carcinoma samples. The fitness cost was subsequently adjusted by the expression rates of the neoantigens to examine the role of neoantigen expression in tumor immune evasion. Our analyses indicate that, while the number of mutations and neoantigens are not significantly different between actinic keratoses and cutaneous squamous cell carcinomas, the predicted immune recognition of the neoantigen with the highest expression-adjusted fitness cost is lower for cutaneous squamous cell carcinomas compared with actinic keratoses. These findings suggest a role for the down-regulation of expression of highly immunogenic neoantigens in the immune escape of cutaneous squamous cell carcinomas. Furthermore, these findings highlight the importance of incorporating additional factors, such as the quality and expression of the neoantigens, rather than focusing solely on tumor mutational burden, in assessing immune recognition potential.


Subject(s)
Antigens, Neoplasm/immunology , Biomarkers, Tumor , Carcinoma, Squamous Cell/etiology , Disease Susceptibility , Keratosis, Actinic/etiology , Skin Neoplasms/etiology , Algorithms , Disease Susceptibility/immunology , Epitope Mapping , Epitopes/immunology , HLA Antigens/genetics , HLA Antigens/immunology , Histocompatibility Testing , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Models, Biological , Mutation , Exome Sequencing
8.
Mol Immunol ; 68(2 Pt A): 124-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26116226

ABSTRACT

Gamma-interferon-inducible lysosomal thiol reductase (GILT) is the only enzyme known to catalyze disulfide bond reduction in the endocytic pathway. GILT facilitates the presentation of a subset of epitopes from disulfide bond-containing antigens. Enhanced presentation of MHC class II-restricted epitopes alters central tolerance and modulates CD4+ T cell-mediated autoimmunity. Improved cross-presentation of viral epitopes results in improved cross-priming of viral-specific CD8+ T cells. GILT regulates the cellular redox state. In GILT-/- cells, there is a shift from the reduced to the oxidized form of glutathione, resulting in mitochondrial autophagy, decreased superoxide dismutase 2, and elevated superoxide levels. GILT expression diminishes cellular activation, including decreased phosphorylated ERK1/2, and decreases cellular proliferation. GILT enhances the activity of bacterial hemolysins, such as listeriolysin O, and increases bacterial replication and infection. GILT expression in cancer cells is associated with improved patient survival. These diverse roles of GILT are discussed.


Subject(s)
Antigen Presentation , Antigen-Presenting Cells/immunology , Histocompatibility Antigens Class II/immunology , Lysosomes/immunology , Oxidoreductases Acting on Sulfur Group Donors/immunology , Antigen-Presenting Cells/cytology , Antigen-Presenting Cells/enzymology , Antigens, Viral/genetics , Antigens, Viral/immunology , Autophagy , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cross-Priming , Disulfides/chemistry , Disulfides/immunology , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/immunology , Glutathione/immunology , Glutathione/metabolism , Histocompatibility Antigens Class II/genetics , Humans , Lysosomes/enzymology , Mitochondria/immunology , Mitochondria/metabolism , Oxidation-Reduction , Oxidoreductases Acting on Sulfur Group Donors/genetics , Superoxide Dismutase/genetics , Superoxide Dismutase/immunology
9.
PLoS One ; 10(4): e0123332, 2015.
Article in English | MEDLINE | ID: mdl-25875653

ABSTRACT

While the immune system has the capacity to recognize and destroy melanoma, tolerance mechanisms often hinder the development of effective anti-tumor immune responses. Since many melanoma antigens are self proteins expressed in normal melanocytes, self antigen exposure before tumor development can negatively impact the function of T cells specific for these self/tumor antigens. However, the contribution of self tolerance to anti-melanoma T cell dysfunction remains largely unexplored. We have previously described a TCR transgenic (Tg) mouse model in which T cells specific for the self/melanoma antigen, tyrosinase-related protein 1 (TRP1), develop in the presence of endogenous TRP1 expression (Ag+) and diminished antigen presentation due to the absence of gamma-interferon-inducible lysosomal thiol reductase (GILT-/-). We show that TRP1-specific T cells from these Ag+GILT-/-Tg mice do not protect from melanoma tumor growth, fail to induce autoimmune vitiligo, and undergo diminished proliferation compared to T cells from Ag-GILT+/+Tg mice. Despite an increased frequency of TRP1-specific Treg cells in Ag+GILT-/-Tg mice compared to Ag-GILT+/+Tg animals, Treg cell depletion only partially rescues the proliferative capacity of T cells from TRP1-expressing mice, suggesting the involvement of additional suppressive mechanisms. An increased percentage of melanoma-specific T cells from Ag+GILT-/-Tg animals express PD-1, an inhibitory receptor associated with the maintenance of T cell exhaustion. Antibody blockade of PD-1 partially improves the ability of TRP1-specific T cells from Ag+GILT-/-Tg mice to produce IL-2. These findings demonstrate that melanoma-specific T cells exposed to a self/melanoma antigen in healthy tissue develop an exhaustion-like phenotype characterized by PD-1-mediated immunosuppression prior to encounter with tumor.


Subject(s)
Antigens, Neoplasm/immunology , Autoantigens/immunology , CD4-Positive T-Lymphocytes/immunology , Melanoma-Specific Antigens/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cell Proliferation , Flow Cytometry , Immune Tolerance/immunology , Immunophenotyping , Interleukin-2/immunology , Interleukin-2/metabolism , Male , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Oxidoreductases/genetics , Oxidoreductases/immunology , Oxidoreductases Acting on Sulfur Group Donors , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Vitiligo/genetics , Vitiligo/immunology
10.
Eur J Immunol ; 43(1): 65-74, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23012103

ABSTRACT

MHC class II-restricted Ag processing requires protein degradation in the endocytic pathway for the activation of CD4(+) T cells. Gamma-interferon-inducible lysosomal thiol reductase (GILT) facilitates Ag processing by reducing protein disulfide bonds in this compartment. Lysosomal cysteine protease cathepsin S (CatS) contains disulfide bonds and mediates essential steps in MHC class II-restricted processing, including proteolysis of large polypeptides and cleavage of the invariant chain. We sought to determine whether GILT's reductase activity regulates CatS expression and function. Confocal microscopy confirmed that GILT and CatS colocalized within lysosomes of B cells. GILT expression posttranscriptionally decreased the steady-state protein expression of CatS in primary B cells and B-cell lines. GILT did not substantially alter the expression of other lysosomal proteins, including H2-M, H2-O, or CatL. GILT's reductase active site was necessary for diminished CatS protein levels, and GILT expression decreased the half-life of CatS, suggesting that GILT-mediated reduction of protein disulfide bonds enhances CatS degradation. GILT expression decreased the proteolysis of a CatS selective substrate. This study illustrates a physiologic mechanism that regulates CatS and has implications for fine tuning MHC class II-restricted Ag processing and for the development of CatS inhibitors, which are under investigation for the treatment of autoimmune disease.


Subject(s)
Antigen Presentation , B-Lymphocytes/immunology , Cathepsins/metabolism , Lysosomes/metabolism , Oxidoreductases/metabolism , Animals , Antigen Presentation/genetics , Catalytic Domain/genetics , Cell Line , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Mutation/genetics , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases Acting on Sulfur Group Donors , Protein Processing, Post-Translational/genetics , Protein Stability
11.
Front Immunol ; 4: 425, 2013.
Article in English | MEDLINE | ID: mdl-24409177

ABSTRACT

The major histocompatibility complex (MHC) class II-restricted antigen processing pathway presents antigenic peptides acquired in the endocytic route for the activation of CD4(+) T cells. Multiple cancers express MHC class II, which may influence the anti-tumor immune response and patient outcome. Low MHC class II expression is associated with poor survival in diffuse large B-cell lymphoma (DLBCL), the most common form of aggressive non-Hodgkin lymphoma. Therefore, we investigated whether gamma-interferon-inducible lysosomal thiol reductase (GILT), an upstream component of the MHC class II-restricted antigen processing pathway that is not regulated by the transcription factor class II transactivator, may be important in DLBCL biology. GILT reduces protein disulfide bonds in the endocytic compartment, exposing additional epitopes for binding to MHC class II and facilitating antigen presentation. In each of four independent gene expression profiling cohorts with a total of 585 DLBCL patients, low GILT expression was significantly associated with poor overall survival. In contrast, low expression of a classical MHC class II gene, HLA-DRA, was associated with poor survival in one of four cohorts. The association of low GILT expression with poor survival was independent of established clinical and molecular prognostic factors, the International Prognostic Index and the cell of origin classification, respectively. Immunohistochemical analysis of GILT expression in 96 DLBCL cases demonstrated variation in GILT protein expression within tumor cells which correlated strongly with GILT mRNA expression. These studies identify a novel association between GILT expression and clinical outcome in lymphoma. Our findings underscore the role of antigen processing in DLBCL and suggest that molecules targeting this pathway warrant investigation as potential therapeutics.

12.
Front Immunol ; 4: 429, 2013 Dec 04.
Article in English | MEDLINE | ID: mdl-24409178

ABSTRACT

The MHC class II-restricted antigen processing pathway generates peptide:MHC complexes in the endocytic pathway for the activation of CD4(+) T cells. Gamma-interferon-inducible lysosomal thiol reductase (GILT) reduces protein disulfide bonds in the endocytic compartment, thereby exposing buried epitopes for MHC class II binding and presentation. T cell hybridoma responses and elution of MHC class II bound peptides have identified GILT-dependent epitopes, GILT-independent epitopes, and epitopes that are more efficiently presented in the absence of GILT termed GILT-prevented epitopes. GILT-mediated alteration in the MHC class II-restricted peptidome modulates T cell development in the thymus and peripheral tolerance and influences the pathogenesis of autoimmunity. Recent studies suggest an emerging role for GILT in the response to pathogens and cancer survival.

13.
Antioxid Redox Signal ; 15(3): 657-68, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21506690

ABSTRACT

Gamma-interferon-inducible lysosomal thiol reductase (GILT) is constitutively expressed in most antigen presenting cells and is interferon γ inducible in other cell types via signal transducer and activator of transcription 1. Normally, N- and C-terminal propeptides are cleaved in the early endosome, and the mature protein resides in late endosomes and lysosomes. Correspondingly, GILT has maximal reductase activity at an acidic pH. Monocyte differentiation via Toll-like receptor 4 triggers secretion of a disulfide-linked dimer of the enzymatically active precursor, which may contribute to inflammation. GILT facilitates major histocompatibility complex (MHC) class II-restricted processing through reduction of protein disulfide bonds in the endocytic pathway and is hypothesized to expose buried epitopes for MHC class II binding. GILT can also facilitate the transfer of disulfide-containing antigens into the cytosol, enhancing their cross-presentation by MHC class I. A variety of antigens are strongly influenced by GILT-mediated reduction, including hen egg lysozyme, melanocyte differentiation antigens, and viral envelope glycoproteins. In addition, GILT is conserved among lower eukaryotes and likely has additional functions. For example, GILT expression increases the stability of superoxide dismutase 2 and decreases reactive oxygen species, which correlates with decreased cellular proliferation. It is also a critical host factor for infection with Listeria monocytogenes.


Subject(s)
Disulfides/chemistry , Endocytosis/immunology , Oxidoreductases Acting on Sulfur Group Donors/immunology , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Amino Acid Sequence , Animals , Antigens/metabolism , Cell Differentiation , Endosomes/metabolism , Genes, MHC Class II/immunology , Humans , Melanocytes/metabolism , Molecular Sequence Data , Monocytes/immunology , Muramidase/metabolism , Protein Processing, Post-Translational/immunology , Reactive Oxygen Species/metabolism , STAT1 Transcription Factor/immunology , Superoxide Dismutase/metabolism , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...