Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
JCO Precis Oncol ; 8: e2300456, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38691816

ABSTRACT

PURPOSE: Here, we report the sensitivity of a personalized, tumor-informed circulating tumor DNA (ctDNA) assay (Signatera) for detection of molecular relapse during long-term follow-up of patients with breast cancer. METHODS: A total of 156 patients with primary breast cancer were monitored clinically for up to 12 years after surgery and adjuvant chemotherapy. Semiannual blood samples were prospectively collected, and analyzed retrospectively to detect residual disease by ultradeep sequencing using ctDNA assays, developed from primary tumor whole-exome sequencing data. RESULTS: Personalized Signatera assays detected ctDNA ahead of clinical or radiologic relapse in 30 of the 34 patients who relapsed (patient-level sensitivity of 88.2%). Relapse was predicted with a lead interval of up to 38 months (median, 10.5 months; range, 0-38 months), and ctDNA positivity was associated with shorter relapse-free survival (P < .0001) and overall survival (P < .0001). All relapsing triple-negative patients (n = 7/23) had a ctDNA-positive test within a median of 8 months (range, 0-19 months), while the 16 nonrelapsed patients with triple-negative breast cancer remained ctDNA-negative during a median follow-up of 58 months (range, 8-99 months). The four patients who had negative tests before relapse all had hormone receptor-positive (HR+) disease and conversely, five of the 122 nonrelapsed patients (all HR+) had an occasional positive test. CONCLUSION: Serial postoperative ctDNA assessment has strong prognostic value, provides a potential window for earlier therapeutic intervention, and may enable more effective monitoring than current clinical tests such as cancer antigen 15-3. Our study provides evidence that those with serially negative ctDNA tests have superior clinical outcomes, providing reassurance to patients with breast cancer. For select cases with HR+ disease, decisions about treatment management might require serial monitoring despite the ctDNA-positive result.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/blood , Breast Neoplasms/surgery , Circulating Tumor DNA/blood , Middle Aged , Prognosis , Follow-Up Studies , Aged , Adult , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/genetics , Retrospective Studies , Aged, 80 and over
2.
Skelet Muscle ; 14(1): 10, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760872

ABSTRACT

Loss-of-function mutations in MEGF10 lead to a rare and understudied neuromuscular disorder known as MEGF10-related myopathy. There are no treatments for the progressive respiratory distress, motor impairment, and structural abnormalities in muscles caused by the loss of MEGF10 function. In this study, we deployed cellular and molecular assays to obtain additional insights about MEGF10-related myopathy in juvenile, young adult, and middle-aged Megf10 knockout (KO) mice. We found fewer muscle fibers in juvenile and adult Megf10 KO mice, supporting published studies that MEGF10 regulates myogenesis by affecting satellite cell differentiation. Interestingly, muscle fibers do not exhibit morphological hallmarks of atrophy in either young adult or middle-aged Megf10 KO mice. We next examined the neuromuscular junction (NMJ), in which MEGF10 has been shown to concentrate postnatally, using light and electron microscopy. We found early and progressive degenerative features at the NMJs of Megf10 KO mice that include increased postsynaptic fragmentation and presynaptic regions not apposed by postsynaptic nicotinic acetylcholine receptors. We also found perisynaptic Schwann cells intruding into the NMJ synaptic cleft. These findings strongly suggest that the NMJ is a site of postnatal pathology in MEGF10-related myopathy. In support of these cellular observations, RNA-seq analysis revealed genes and pathways associated with myogenesis, skeletal muscle health, and NMJ stability dysregulated in Megf10 KO mice compared to wild-type mice. Altogether, these data provide new and valuable cellular and molecular insights into MEGF10-related myopathy.


Subject(s)
Disease Models, Animal , Mice, Knockout , Neuromuscular Junction , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Mice , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscular Diseases/metabolism , Muscular Diseases/physiopathology , Schwann Cells/metabolism , Schwann Cells/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Male
3.
Trends Neurosci ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38664109

ABSTRACT

The highly specialized nonmyelinating glial cells present at somatic peripheral nerve endings, known collectively as terminal Schwann cells (TSCs), play critical roles in the development, function and repair of their motor and sensory axon terminals and innervating tissue. Over the past decades, research efforts across various vertebrate species have revealed that while TSCs are a diverse group of cells, they share a number of features among them. In this review, we summarize the state-of-knowledge about each TSC type and explore the opportunities that TSCs provide to treat conditions that afflict peripheral axon terminals.

4.
Aging Cell ; 22(11): e13981, 2023 11.
Article in English | MEDLINE | ID: mdl-37771191

ABSTRACT

Age-induced degeneration of the neuromuscular junction (NMJ) is associated with motor dysfunction and muscle atrophy. While the impact of aging on the NMJ presynapse and postsynapse is well-documented, little is known about the changes perisynaptic Schwann cells (PSCs), the synaptic glia of the NMJ, undergo during aging. Here, we examined PSCs in young, middle-aged, and old mice in three muscles with different susceptibility to aging. Using light and electron microscopy, we found that PSCs acquire age-associated cellular features either prior to or at the same time as the onset of NMJ degeneration. Notably, we found that aged PSCs fail to completely cap the NMJ even though they are more abundant in old compared with young mice. We also found that aging PSCs form processes that either intrude into the synaptic cleft or guide axonal sprouts to innervate other NMJs. We next profiled the transcriptome of PSCs and other Schwann cells (SCs) to identify mechanisms altered in aged PSCs. This analysis revealed that aged PSCs acquire a transcriptional pattern previously shown to promote phagocytosis that is absent in other SCs. It also showed that aged PSCs upregulate unique pro-inflammatory molecules compared to other aged SCs. Interestingly, neither synaptogenesis genes nor genes that are typically upregulated by repair SCs were induced in aged PSCs or other SCs. These findings provide insights into cellular and molecular mechanisms that could be targeted in PSCs to stave off the deleterious effects of aging on NMJs.


Subject(s)
Neuromuscular Junction , Schwann Cells , Animals , Mice , Synapses/physiology , Neuroglia , Aging
5.
J Agric Food Chem ; 71(24): 9469-9480, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37283492

ABSTRACT

Noncaloric sweeteners have enabled a reduction of carbohydrate sweeteners in the diet for many years, thus combating obesity, diabetes, and other health disorders. However, many consumers reject noncaloric sweeteners, as they exhibit delays in sweetness onset, objectionable lingering sweet aftertaste, and the absence of sugar-like mouthfeel. We propose that the temporal taste differences between carbohydrate and noncaloric sweeteners result from slowed diffusion of the latter to and from sweetener receptors through the amphipathic mucous hydrogel covering the tongue. Also, we demonstrate that formulation of noncaloric sweeteners with K+/Mg2+/Ca2+ mineral salt blends markedly attenuates lingering sweetness, an effect believed to be due to a composite of osmotic and chelate-mediated compaction of the mucous hydrogel covering the tongue. For example, sweetness linger values (intensity units in % sucrose eq) for rebaudioside A and aspartame are reduced from 5.0 (0.5 SD) to 1.6 (0.4 SD) and from 4.0 (0.7 SD) to 1.2 (0.4 SD), respectively, by formulation with 10 mM KCl/3 mM MgCl2/3 mM CaCl2. Finally, we propose that sugar-like mouthfeel is a consequence of K+/Mg2+/Ca2+ activation of the calcium-sensing receptor present in a subset of taste bud cells. For example, the mouthfeel intensity of a sucrose solution increased from 1.8 (0.6 SD) to 5.1 (0.4 SD).


Subject(s)
Sugars , Sweetening Agents , Taste/physiology , Sucrose , Minerals
6.
Glia ; 71(4): 926-944, 2023 04.
Article in English | MEDLINE | ID: mdl-36479906

ABSTRACT

Non-myelinating Schwann cells (NMSC) play important roles in peripheral nervous system formation and function. However, the molecular identity of these cells remains poorly defined. We provide evidence that Kir4.1, an inward-rectifying K+ channel encoded by the KCNJ10 gene, is specifically expressed and active in NMSC. Immunostaining revealed that Kir4.1 is present in terminal/perisynaptic SCs (TPSC), synaptic glia at neuromuscular junctions (NMJ), but not in myelinating SCs (MSC) of adult mice. To further examine the expression pattern of Kir4.1, we generated BAC transgenic Kir4.1-CreERT2 mice and crossed them to the tdTomato reporter line. Activation of CreERT2 with tamoxifen after the completion of myelination onset led to robust expression of tdTomato in NMSC, including Remak Schwann cells (RSC) along peripheral nerves and TPSC, but not in MSC. In contrast, activating CreERT2 before and during the onset of myelination led to tdTomato expression in NMSC and MSC. These observations suggest that immature SC express Kir4.1, and its expression is then downregulated selectively in myelin-forming SC. In support, we found that while activating CreERT2 induces tdTomato expression in immature SC, it fails to induce tdTomato in MSC associated with sensory axons in culture. NMSC derived from neonatal sciatic nerve were shown to express Kir4.1 and exhibit barium-sensitive inwardly rectifying macroscopic K+ currents. Thus, this study identified Kir4.1 as a potential modulator of immature SC and NMSC function. Additionally, it established a novel transgenic mouse line to introduce or delete genes in NMSC.


Subject(s)
Myelin Sheath , Schwann Cells , Mice , Animals , Schwann Cells/metabolism , Myelin Sheath/metabolism , Mice, Transgenic , Sciatic Nerve/metabolism , Tamoxifen/pharmacology
7.
Br J Cancer ; 127(10): 1858-1864, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36088510

ABSTRACT

BACKGROUND: We report copy-number profiling by low-pass WGS (LP-WGS) in individual circulating tumour cells (CTCs) for guiding treatment in patients with metastatic breast cancer (MBC), comparing CTC results with mutations detected in circulating tumour DNA (ctDNA) in the same blood samples. METHODS: Across 10 patients with MBC who were progressing at the time of blood sampling and that had >20 CTCs detected by CellSearch®, 63 single cells (50 CTCs and 13 WBCs) and 16 cell pools (8 CTC pools and 8 WBC pools) were recovered from peripheral blood by CellSearch®/DEPArray™ and sequenced with Ampli1 LowPass technology (Menarini Silicon Biosystems). Copy-number aberrations were identified using the MSBiosuite software platform, and results were compared with mutations detected in matched plasma cfDNA analysed by targeted next-generation sequencing using the Oncomine™ Breast cfDNA Assay (Thermo Fisher). RESULTS: LP-WGS data demonstrated copy-number gains/losses in individual CTCs in regions including FGFR1, JAK2 and CDK6 in five patients, ERBB2 amplification in two HER2-negative patients and BRCA loss in two patients. Seven of eight matched plasmas also had mutations in ctDNA in PIK3CA, TP53, ESR1 and KRAS genes with mutant allele frequencies (MAF) ranging from 0.05 to 33.11%. Combining results from paired CTCs and ctDNA, clinically actionable targets were identified in all ten patients. CONCLUSION: This combined analysis of CTCs and ctDNA may offer a new approach for monitoring of disease progression and to direct therapy in patients with advanced MBC, at a time when they are coming towards the end of other treatment options.


Subject(s)
Breast Neoplasms , Cell-Free Nucleic Acids , Circulating Tumor DNA , Neoplastic Cells, Circulating , Humans , Female , Breast Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Circulating Tumor DNA/genetics , Cell-Free Nucleic Acids/genetics , Mutation , Biomarkers, Tumor/genetics
8.
Eur Respir J ; 2022 May 12.
Article in English | MEDLINE | ID: mdl-35144988

ABSTRACT

BACKGROUND: There is an emerging understanding that coronavirus disease 2019 (COVID-19) is associated with increased incidence of pneumomediastinum. We aimed to determine its incidence among patients hospitalised with COVID-19 in the United Kingdom and describe factors associated with outcome. METHODS: A structured survey of pneumomediastinum and its incidence was conducted from September 2020 to February 2021. United Kingdom-wide participation was solicited via respiratory research networks. Identified patients had SARS-CoV-2 infection and radiologically proven pneumomediastinum. The primary outcomes were to determine incidence of pneumomediastinum in COVID-19 and to investigate risk factors associated with patient mortality. RESULTS: 377 cases of pneumomediastinum in COVID-19 were identified from 58 484 inpatients with COVID-19 at 53 hospitals during the study period, giving an incidence of 0.64%. Overall 120-day mortality in COVID-19 pneumomediastinum was 195/377 (51.7%). Pneumomediastinum in COVID-19 was associated with high rates of mechanical ventilation. 172/377 patients (45.6%) were mechanically ventilated at the point of diagnosis. Mechanical ventilation was the most important predictor of mortality in COVID-19 pneumomediastinum at the time of diagnosis and thereafter (p<0.001) along with increasing age (p<0.01) and diabetes mellitus (p=0.08). Switching patients from continuous positive airways pressure support to oxygen or high flow nasal oxygen after the diagnosis of pneumomediastinum was not associated with difference in mortality. CONCLUSIONS: Pneumomediastinum appears to be a marker of severe COVID-19 pneumonitis. The majority of patients in whom pneumomediastinum was identified had not been mechanically ventilated at the point of diagnosis.

9.
Article in English | MEDLINE | ID: mdl-34849446

ABSTRACT

PURPOSE: We investigated the utility of the Oncomine Breast cfDNA Assay for detecting circulating tumor DNA (ctDNA) in women from a breast screening population, including healthy women with no abnormality detected by mammogram, and women on follow-up through to advanced breast cancer. MATERIALS AND METHODS: Blood samples were taken from 373 women (127 healthy controls recruited through breast screening, 28 ductal carcinoma in situ, 60 primary breast cancers, 47 primary breast cancer on follow-up, and 111 metastatic breast cancers [MBC]) to recover plasma and germline DNA for analysis with the Oncomine Breast cfDNA Assay on the Ion S5 platform. RESULTS: One hundred sixteen of 373 plasma samples had one or more somatic variants detected across eight of the 10 genes and were called ctDNA-positive; MBC had the highest proportion of ctDNA-positive samples (61; 55%) and healthy controls the lowest (20; 15.7%). ESR1, TP53, and PIK3CA mutations account for 93% of all variants detected and predict poor overall survival in MBC (hazard ratio = 3.461; 95% CI, 1.866 to 6.42; P = .001). Patients with MBC had higher plasma cell-free DNA levels, higher variant allele frequencies, and more polyclonal variants, notably in ESR1 than in all other groups. Only 15 individuals had evidence of potential clonal hematopoiesis of indeterminate potential mutations. CONCLUSION: We were able detect ctDNA across the breast cancer spectrum, notably in MBC where variants in ESR1, TP53, and PIK3CA predicted poor overall survival. The assay could be used to monitor emergence of resistance mutations such as in ESR1 that herald resistance to aromatase inhibitors to tailor adjuvant therapies. However, we suggest caution is needed when interpreting results from a single plasma sample as variants were also detected in a small proportion of HCs.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Circulating Tumor DNA/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Estrogen Receptor alpha/genetics , Tumor Suppressor Protein p53/genetics , Adult , Aged , Aged, 80 and over , Aromatase Inhibitors/pharmacology , Biomarkers, Tumor/blood , Breast Neoplasms/blood , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Case-Control Studies , Circulating Tumor DNA/blood , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/blood , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Middle Aged , Mutation , Neoplasm Metastasis , Survival Analysis
10.
Elife ; 102021 07 29.
Article in English | MEDLINE | ID: mdl-34323217

ABSTRACT

During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs); however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing. We show that a subset of MuSCs specifically engraft in a position proximal to the neuromuscular junction (NMJ), the synapse between myofibers and motor neurons, in healthy young adult muscles. In aging and in a mouse model of neuromuscular degeneration (Cu/Zn superoxide dismutase knockout - Sod1-/-), this localized engraftment behavior was reduced. Genetic rescue of motor neurons in Sod1-/- mice reestablished integrity of the NMJ in a manner akin to young muscle and partially restored MuSC ability to engraft into positions proximal to the NMJ. Using single cell RNA-sequencing of MuSCs isolated from aged muscle, we demonstrate that a subset of MuSCs are molecularly distinguishable from MuSCs responding to myofiber injury and share similarity to synaptic myonuclei. Collectively, these data reveal unique features of MuSCs that respond to synaptic perturbations caused by aging and other stressors.


Subject(s)
Aging , Muscle, Skeletal/injuries , Myoblasts, Skeletal/physiology , Neuromuscular Junction/physiology , Superoxide Dismutase-1/deficiency , Animals , Female , Male , Mice, Knockout
11.
Breast Cancer Res Treat ; 188(2): 465-476, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34097174

ABSTRACT

PURPOSE: There is growing interest in the application of circulating tumour DNA (ctDNA) as a sensitive tool for monitoring tumour evolution and guiding targeted therapy in patients with cancer. However, robust comparisons of different platform technologies are still required. Here we compared the InVisionSeq™ ctDNA Assay with the Oncomine™ Breast cfDNA Assay to assess their concordance and feasibility for the detection of mutations in plasma at low (< 0.5%) variant allele fraction (VAF). METHODS: Ninety-six plasma samples from 50 patients with estrogen receptor (ER)-positive metastatic breast cancer (mBC) were profiled using the InVision Assay. Results were compared to the Oncomine assay in 30 samples from 26 patients, where there was sufficient material and variants were covered by both assays. Longitudinal samples were analysed for 8 patients with endocrine resistance. RESULTS: We detected alterations in 59/96 samples from 34/50 patients analysed with the InVision assay, most frequently affecting ESR1, PIK3CA and TP53. Complete or partial concordance was found in 28/30 samples analysed by both assays, and VAF values were highly correlated. Excellent concordance was found for most genes, and most discordant calls occurred at VAF < 1%. In longitudinal samples from progressing patients with endocrine resistance, we detected consistent alterations in sequential samples, most commonly in ESR1 and PIK3CA. CONCLUSION: This study shows that both ultra-deep next-generation sequencing (NGS) technologies can detect genomic alternations even at low VAFs in plasma samples of mBC patients. The strong agreement of the technologies indicates sufficient reproducibility for clinical use as prognosic and predictive biomarker.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Circulating Tumor DNA/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Reproducibility of Results
12.
Br J Hosp Med (Lond) ; 82(3): 1-9, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33792391

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread and have grave health and socioeconomic consequences worldwide. Researchers have raced to understand the pathophysiological mechanisms underpinning the disease caused by SARS-CoV-2 so that effective therapeutic targets can be discovered. This review summarises the key pharmacotherapies that are being investigated for treatment of COVID-19, including antiviral, immunomodulator and anticoagulation strategies.


Subject(s)
Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Glucocorticoids/therapeutic use , Immunologic Factors/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Azetidines/therapeutic use , COVID-19/therapy , Colchicine/therapeutic use , Dexamethasone/therapeutic use , Humans , Immunization, Passive , Ivermectin/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Purines/therapeutic use , Pyrazoles/therapeutic use , SARS-CoV-2 , Sulfonamides/therapeutic use , COVID-19 Serotherapy
13.
Histopathology ; 78(6): 838-848, 2021 May.
Article in English | MEDLINE | ID: mdl-33155719

ABSTRACT

AIMS: The decision to consider adjuvant chemotherapy (AC) for non-small cell lung cancer is currently governed by clinical stage. This study aims to assess other routinely collected pathological variables related to metastasis and survival for their ability to predict the efficacy of AC in lung adenocarcinoma. METHODS AND RESULTS: A retrospective single-centre series of 620 resected lung non-mucinous adenocarcinoma cases from 2005 to 2015 was used. Digital images of all slides were subjected to central review, and data on tumour histopathology, AC treatment and patient survival were compiled. A statistical case matching approach was used to counter selection bias. Several high-risk pathological criteria predict both pathological nodal involvement and early death: positive vascular invasion status (VI+) (HR = 2.10, P < 0.001), positive visceral pleural invasion status (VPI+) (HR = 2.16, P < 0.001), and solid/micropapillary-predominant WHO tumour type (SPA/MPPA) (HR = 3.29, P < 0.001). Crucially, these criteria also identify patient groups benefiting from AC (VI + HR = 0.69, P = 0.167, VPI + HR = 0.44, P = 0.004, SPA/MPPA HR = 0.36, P = 0.006). Cases showing VI+/VPI+/SPA/MPPA histology in the absence of AC stage criteria were common (170 of 620 total), and 8 had actually received AC. This group showed much better outcomes than equivalent untreated cases in matched analysis (3-year OS 100.0% versus 31.3%). Inclusion of patients with VI+/VPI+/SPA/MPPA histology would increase AC-eligible patients from 51.0% to 84.0% of non-mucinous tumours in our cohort. CONCLUSIONS: Our data provide preliminary evidence that the consideration of AC in patients with additional high-risk pathological indicators may significantly improve outcomes in operable lung adenocarcinoma, and that AC may be currently underused.


Subject(s)
Adenocarcinoma of Lung/pathology , Antineoplastic Agents/therapeutic use , Lung Neoplasms/pathology , Neoplasm Invasiveness/pathology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/surgery , Aged , Aged, 80 and over , Chemotherapy, Adjuvant , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/surgery , Male , Middle Aged , Neoplasm Staging , Prognosis , Retrospective Studies , Survival Rate , Treatment Outcome
14.
Sci Rep ; 10(1): 11132, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32636481

ABSTRACT

Schwann cells (SCs) are integral to the formation and function of the peripheral nervous system (PNS). Exemplifying their importance, the loss or dysfunction of SCs is a feature of a myriad of diseases and conditions that compromise the PNS. Thus, it remains essential to understand the rules that govern the proliferation, differentiation and reconnection of Schwann cells with peripheral axons. Here, we examined the consequences of locally and acutely ablating terminal Schwann cells (tSCs) at the adult mouse neuromuscular junction (NMJ) by using mice expressing diphtheria toxin receptor (DTR) preferentially in tSCs compared to myelinating SCs followed by local application of diphtheria toxin (DTX). After DTX application, tSCs died but, importantly and contrary to expectations, their associated motor axons did not fully degenerate. Within 3 weeks, tSCs returned and reestablished coverage of the synapse with increased numbers. Furthermore, the post-synaptic muscle fibers displayed increased distinct clusters of acetylcholine receptors and axon terminals exhibited numerous terminal varicosities. The lack of degeneration of bare motor axon terminals and the morphological remodeling that occurs upon the return of tSCs to the NMJ may have wider implications for the mechanisms governing tSC occupancy of the adult NMJ and for conditions that adversely affect tSCs.


Subject(s)
Neuromuscular Junction/physiology , Neuronal Plasticity/physiology , Schwann Cells/physiology , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Diphtheria Toxin/pharmacology , Female , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron , Schwann Cells/drug effects , Synapses/physiology , Tamoxifen/pharmacology
15.
Int J Mol Sci ; 21(12)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599895

ABSTRACT

Soft tissue sarcomas (STS) are rare, malignant tumours with a generally poor prognosis. Our aim was to explore the potential of cell free DNA (cfDNA) and circulating tumour DNA (ctDNA) analysis to track non-metastatic STS patients undergoing attempted curative treatment. The analysed cohort (n = 29) contained multiple STS subtypes including myxofibrosarcomas, undifferentiated pleomorphic sarcomas, leiomyosarcomas, and dedifferentiated liposarcomas amongst others. Perioperative cfDNA levels trended towards being elevated in patients (p = 0.07), although did not correlate with tumour size, grade, recurrence or subtype, suggesting a limited diagnostic or prognostic role. To characterise ctDNA, an amplicon panel covering three genes commonly mutated in STSs was first trialled on serial plasma collected from nine patients throughout follow-up. This approach only identified ctDNA in 2.5% (one in 40) of the analysed samples. Next custom-designed droplet digital PCR assays and Ion AmpliSeq™ panels were developed to track single nucleotide variants identified in patients' STSs by whole exome sequencing (1-6 per patient). These approaches identified ctDNA in 17% of patients. Although ctDNA was identified before radiologically detectable recurrence in two cases, the absence of demonstrable ctDNA in 83% of cases highlights the need for much work before circulating nucleic acids can become a useful means to track STS patients.


Subject(s)
Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Mutation , Sarcoma/pathology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/analysis , Circulating Tumor DNA/analysis , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Middle Aged , Prognosis , Prospective Studies , Sarcoma/genetics , Sarcoma/surgery , Survival Rate
16.
Skelet Muscle ; 10(1): 15, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32381068

ABSTRACT

BACKGROUND: The arrangement of myonuclei in skeletal muscle tissue has long been used as a biomarker for muscle health, but there is a dearth of in vivo exploration of potential effects of myonuclear organization on the function and regeneration of skeletal muscle because traditional nuclear stains are performed on postmortem tissue. Therefore, we sought a transgenic method to produce a selective and persistent myonuclear label in whole muscles of living mice. METHODS: We bred together a mouse line with skeletal muscle fiber-selective expression of Cre recombinase and a second mouse line with a Cre-inducible fluorescently tagged histone protein to generate a mouse line that produces a myonuclear label suitable for vital imaging and histology of fixed tissue. We tested the effectiveness of this vital label in three conditions known to generate abnormal myonuclear positioning. First, we injured myofibers of young mice with cardiotoxin. Second, this nuclear label was bred into a murine model of Duchenne muscular dystrophy. Finally, we examined old mice from this line that have undergone the natural aging process. Welch's t test was used to compare wild type and transgenic mice. RESULTS: The resulting mouse line transgenically produces a vital red fluorescent label of myonuclei, which facilitates their in vivo imaging in skeletal muscle tissue. Transgenic fluorescent labeling of myonuclei has no significant effect on skeletal muscle function, as determined by twitch and tetanic force recordings. In each muscle examined, including those under damaged, dystrophic, and aged conditions, the labeled myonuclei exhibit morphology consistent with established literature, and reveal a specialized arrangement of subsynaptic myonuclei at the neuromuscular junction. CONCLUSIONS: Taken together, our results demonstrate that this mouse line provides a versatile tool to selectively visualize myonuclei within both living and fixed preparations of healthy, injured, diseased, and aged muscles.


Subject(s)
Aging/pathology , Cell Fusion , Cell Nucleus/pathology , Muscle Fibers, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Animals , Cardiotoxins/toxicity , Cell Nucleus/metabolism , Cells, Cultured , Female , Histones/genetics , Histones/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Red Fluorescent Protein
17.
Breast Cancer Res ; 21(1): 149, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31856868

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most common cancer in women, and despite the introduction of new screening programmes, therapies and monitoring technologies, there is still a need to develop more useful tests for monitoring treatment response and to inform clinical decision making. The purpose of this study was to compare circulating cell-free DNA (cfDNA) and circulating tumour cells (CTCs) with conventional breast cancer blood biomarkers (CA15-3 and alkaline phosphatase (AP)) as predictors of response to treatment and prognosis in patients with metastatic breast cancer (MBC). METHODS: One hundred ninety-four female patients with radiologically confirmed MBC were recruited to the study. Total cfDNA levels were determined by qPCR and compared with CELLSEARCH® CTC counts and CA15-3 and alkaline phosphatase (AP) values. Blood biomarker data were compared with conventional tumour markers, treatment(s) and response as assessed by RECIST and survival. Non-parametric statistical hypothesis tests were used to examine differences, correlation analysis and linear regression to determine correlation and to describe its effects, logistic regression and receiver operating characteristic curve (ROC curve) to estimate the strength of the relationship between biomarkers and clinical outcomes and value normalization against standard deviation to make biomarker values comparable. Kaplan-Meier estimator and Cox regression models were used to assess survival. Univariate and multivariate models were performed where appropriate. RESULTS: Multivariate analysis showed that both the amount of total cfDNA (p value = 0.024, HR = 1.199, CI = 1.024-1.405) and the number of CTCs (p value = 0.001, HR = 1.243, CI = 1.088-1.421) are predictors of overall survival (OS), whereas total cfDNA levels is the sole predictor for progression-free survival (PFS) (p value = 0.042, HR = 1.193, CI = 1.007-1.415) and disease response when comparing response to non-response to treatment (HR = 15.917, HR = 12.481 for univariate and multivariate analysis, respectively). Lastly, combined analysis of CTCs and cfDNA is more informative than the combination of two conventional biomarkers (CA15-3 and AP) for prediction of OS. CONCLUSION: Measurement of total cfDNA levels, which is a simpler and less expensive biomarker than CTC counts, is associated with PFS, OS and response in MBC, suggesting potential clinical application of a cheap and simple blood-based test.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Circulating Tumor DNA , Adult , Aged , Aged, 80 and over , Breast Neoplasms/diagnosis , Breast Neoplasms/therapy , Clinical Decision-Making , Disease Management , Female , Humans , Kaplan-Meier Estimate , Liquid Biopsy , Magnetic Resonance Imaging , Middle Aged , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Odds Ratio , Prognosis , Tomography, X-Ray Computed
19.
Sci Rep ; 9(1): 7799, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127156

ABSTRACT

Spinal muscular atrophy (SMA) is caused by loss-of-function mutations in the survival of motoneuron gene 1 (SMN1). SMA is characterized by motoneuron death, skeletal muscle denervation and atrophy. Disease severity inversely correlates with copy number of a second gene (SMN2), which harbors a splicing defect that causes the production of inadequate levels of functional SMN protein. Small molecules that modify SMN2 splicing towards increased production of functional SMN significantly ameliorate SMA phenotypes in mouse models of severe SMA. At suboptimal doses, splicing modifiers, such as SMN-C1, have served to generate mice that model milder SMA, referred to as pharmacological SMA mice, which survive into early adulthood. Nerve sprouting at endplates, known as terminal sprouting, is key to normal muscle fiber reinnervation following nerve injury and its promotion might mitigate neuromuscular symptoms in mild SMA. Sprouting has been difficult to study in severe SMA mice due to their short lifespan. Here, we show that pharmacological SMA mice are capable of terminal sprouting following reinnervation that is largely SMN-C1 dose-independent, but that they display a reinnervation delay that is critically SMN-C1 dose-dependent. Data also suggest that SMN-C1 can induce by itself a limited terminal sprouting response in SMA and wild-type normally-innervated endplates.


Subject(s)
Muscle, Skeletal/innervation , Muscular Atrophy, Spinal/physiopathology , Neuromuscular Junction/physiopathology , Animals , Disease Models, Animal , Humans , Mice , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy, Spinal/chemically induced , Muscular Atrophy, Spinal/pathology , Nerve Regeneration , Neuromuscular Junction/pathology , Schwann Cells/pathology
20.
Clin Cancer Res ; 25(14): 4255-4263, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30992300

ABSTRACT

PURPOSE: Up to 30% of patients with breast cancer relapse after primary treatment. There are no sensitive and reliable tests to monitor these patients and detect distant metastases before overt recurrence. Here, we demonstrate the use of personalized circulating tumor DNA (ctDNA) profiling for detection of recurrence in breast cancer. EXPERIMENTAL DESIGN: Forty-nine primary patients with breast cancer were recruited following surgery and adjuvant therapy. Plasma samples (n = 208) were collected every 6 months for up to 4 years. Personalized assays targeting 16 variants selected from primary tumor whole-exome data were tested in serial plasma for the presence of ctDNA by ultradeep sequencing (average >100,000X). RESULTS: Plasma ctDNA was detected ahead of clinical or radiologic relapse in 16 of the 18 relapsed patients (sensitivity of 89%); metastatic relapse was predicted with a lead time of up to 2 years (median, 8.9 months; range, 0.5-24.0 months). None of the 31 nonrelapsing patients were ctDNA-positive at any time point across 156 plasma samples (specificity of 100%). Of the two relapsed patients who were not detected in the study, the first had only a local recurrence, whereas the second patient had bone recurrence and had completed chemotherapy just 13 days prior to blood sampling. CONCLUSIONS: This study demonstrates that patient-specific ctDNA analysis can be a sensitive and specific approach for disease surveillance for patients with breast cancer. More importantly, earlier detection of up to 2 years provides a possible window for therapeutic intervention.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/diagnosis , Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing/methods , Mutation , Neoplasm Recurrence, Local/diagnosis , Precision Medicine , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Breast Neoplasms/blood , Breast Neoplasms/genetics , Breast Neoplasms/secondary , Circulating Tumor DNA/blood , Female , Humans , Middle Aged , Neoplasm Metastasis , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Prognosis , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...