Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Nat Microbiol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890490

ABSTRACT

Natural microbial populations exploit phenotypic heterogeneity for survival and adaptation. However, in engineering biology, limiting the sources of variability is a major focus. Here we show that intentionally coupling distinct plasmids via shared replication mechanisms enables bacterial populations to adapt to their environment. We demonstrate that plasmid coupling of carbon-metabolizing operons facilitates copy number tuning of an essential but burdensome construct through the action of a stably maintained, non-essential plasmid. For specific cost-benefit situations, incompatible two-plasmid systems can stably persist longer than compatible ones. We also show using microfluidics that plasmid coupling of synthetic constructs generates population-state memory of previous environmental adaptation without additional regulatory control. This work should help to improve the design of synthetic populations by enabling adaptive engineered strains to function under changing growth conditions without strict fine-tuning of the genetic circuitry.

2.
Trends Cancer ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693003

ABSTRACT

Despite an overall decrease in occurrence, colorectal cancer (CRC) remains the third most common cause of cancer deaths in the USA. Detection of CRC is difficult in high-risk groups, including those with genetic predispositions, with disease traits, or from certain demographics. There is emerging interest in using engineered bacteria to identify early CRC development, monitor changes in the adenoma and CRC microenvironment, and prevent cancer progression. Novel genetic circuits for cancer therapeutics or functions to enhance existing treatment modalities have been tested and verified in vitro and in vivo. Inclusion of biocontainment measures would prepare strains to meet therapeutic standards. Thus, engineered bacteria present an opportunity for detection and treatment of CRC lesions in a highly sensitive and specific manner.

3.
ACS Synth Biol ; 13(3): 728-735, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38330913

ABSTRACT

We recently described a paradigm for engineering bacterial adaptation using plasmids coupled to the same origin of replication. In this study, we use plasmid coupling to generate spatially separated and phenotypically distinct populations in response to heterogeneous environments. Using a custom microfluidic device, we continuously tracked engineered populations along induced gradients, enabling an in-depth analysis of the spatiotemporal dynamics of plasmid coupling. Our observations reveal a pronounced phenotypic separation within 4 h exposure to an opposing gradient of AHL and arabinose. Additionally, by modulating the burden strength balance between coupled plasmids, we demonstrate the inherent limitations and tunability of this system. Intriguingly, phenotypic separation persists for an extended time, hinting at a biophysical spatial retention mechanism reminiscent of natural speciation processes. Complementing our experimental data, mathematical models provide invaluable insights into the underlying mechanisms and guide optimization of plasmid coupling for prospective applications of environmental copy number adaptation engineering across separated domains.


Subject(s)
Bacteria , DNA Copy Number Variations , DNA Copy Number Variations/genetics , Plasmids/genetics , Bacteria/genetics , Models, Theoretical
5.
ACS Synth Biol ; 13(1): 85-102, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38079574

ABSTRACT

Small-molecule control of gene expression underlies the function of numerous engineered gene circuits that are capable of environmental sensing, computation, and memory. While many recently developed inducible promoters have been tailor-made for bacteria or mammalian cells, relatively few new systems have been built for Saccharomyces cerevisiae, limiting the scale of synthetic biology work that can be done in yeast. To address this, we created the yeast Tunable Expression Systems Toolkit (yTEST), which contains a set of five extensively characterized inducible promoter systems regulated by the small-molecules doxycycline (Dox), abscisic acid (ABA), danoprevir (DNV), 1-naphthaleneacetic acid (NAA), and 5-phenyl-indole-3-acetic acid (5-Ph-IAA). Assembly was made to be compatible with the modular cloning yeast toolkit (MoClo-YTK) to enhance the ease of use and provide a framework to benchmark and standardize each system. Using this approach, we built multiple systems with maximal expression levels greater than those of the strong constitutive TDH3 promoter. Furthermore, each of the five classes of systems could be induced at least 60-fold after a 6 h induction and the highest fold change observed was approximately 300. Thus, yTEST provides a reliable, diverse, and customizable set of inducible promoters to modulate gene expression in yeast for applications in synthetic biology, metabolic engineering, and basic research.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Gene Expression
6.
Nat Commun ; 14(1): 7606, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993418

ABSTRACT

Understanding how cells dynamically adapt to their environment is a primary focus of biology research. Temporal information about cellular behavior is often limited by both small numbers of data time-points and the methods used to analyze this data. Here, we apply unsupervised machine learning to a data set containing the activity of 1805 native promoters in E. coli measured every 10 minutes in a high-throughput microfluidic device via fluorescence time-lapse microscopy. Specifically, this data set reveals E. coli transcriptome dynamics when exposed to different heavy metal ions. We use a bioinformatics pipeline based on Independent Component Analysis (ICA) to generate insights and hypotheses from this data. We discovered three primary, time-dependent stages of promoter activation to heavy metal stress (fast, intermediate, and steady). Furthermore, we uncovered a global strategy E. coli uses to reallocate resources from stress-related promoters to growth-related promoters following exposure to heavy metal stress.


Subject(s)
Escherichia coli , Metals, Heavy , Escherichia coli/genetics , Transcriptome , Promoter Regions, Genetic/genetics , Computational Biology , Gene Expression Profiling
7.
Bio Protoc ; 13(22): e4883, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38023791

ABSTRACT

The relative ease of genetic manipulation in S. cerevisiae is one of its greatest strengths as a model eukaryotic organism. Researchers have leveraged this quality of the budding yeast to study the effects of a variety of genetic perturbations, such as deletion or overexpression, in a high-throughput manner. This has been accomplished by producing a number of strain libraries that can contain hundreds or even thousands of distinct yeast strains with unique genetic alterations. While these strategies have led to enormous increases in our understanding of the functions and roles that genes play within cells, the techniques used to screen genetically modified libraries of yeast strains typically rely on plate or sequencing-based assays that make it difficult to analyze gene expression changes over time. Microfluidic devices, combined with fluorescence microscopy, can allow gene expression dynamics of different strains to be captured in a continuous culture environment; however, these approaches often have significantly lower throughput compared to traditional techniques. To address these limitations, we have developed a microfluidic platform that uses an array pinning robot to allow for up to 48 different yeast strains to be transferred onto a single device. Here, we detail a validated methodology for constructing and setting up this microfluidic device, starting with the photolithography steps for constructing the wafer, then the soft lithography steps for making polydimethylsiloxane (PDMS) microfluidic devices, and finally the robotic arraying of strains onto the device for experiments. We have applied this device for dynamic screens of a protein aggregation library; however, this methodology has the potential to enable complex and dynamic screens of yeast libraries for a wide range of applications. Key features • Major steps of this protocol require access to specialized equipment (i.e., microfabrication tools typically found in a cleanroom facility and an array pinning robot). • Construction of microfluidic devices with multiple different feature heights using photolithography and soft lithography with PDMS. • Robotic spotting of up to 48 different yeast strains onto microfluidic devices.

8.
Curr Opin Microbiol ; 76: 102380, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37703812

ABSTRACT

Novel whole-cell bacterial biosensor designs require an emphasis on moving toward field deployment. Many current sensors are characterized under specified laboratory conditions, which frequently do not represent actual deployment conditions. To this end, recent developments such as toolkits for probing new host chassis that are more robust to environments of interest, have paved the way for improved designs. Strategies for rational tuning of genetic components or tools such as genetic amplifiers or designs that allow post hoc tuning are essential in optimizing existing biosensors for practical application. Furthermore, recent work has seen a rise in directed evolution techniques, which can be immensely valuable in both tuning existing sensors and developing sensors for new analytes that lack characterized sensors. Combined with advancements in bioinformatics and capabilities in rewiring two-component systems, many new sensors can be established, broadening biosensor use cases. Last, recent work in CRISPR-based dynamic regulation and memory mechanisms, as well as kill-switches for biosafety and innovative output integration concepts, represents promising steps toward designing bacterial biosensors for deployment in dynamic and heterogeneous conditions.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Bacteria/genetics , Computational Biology
9.
Science ; 381(6658): 682-686, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37561843

ABSTRACT

Synthetic biology has developed sophisticated cellular biosensors to detect and respond to human disease. However, biosensors have not yet been engineered to detect specific extracellular DNA sequences and mutations. Here, we engineered naturally competent Acinetobacter baylyi to detect donor DNA from the genomes of colorectal cancer (CRC) cells, organoids, and tumors. We characterized the functionality of the biosensors in vitro with coculture assays and then validated them in vivo with sensor bacteria delivered to mice harboring colorectal tumors. We observed horizontal gene transfer from the tumor to the sensor bacteria in our mouse model of CRC. This cellular assay for targeted, CRISPR-discriminated horizontal gene transfer (CATCH) enables the biodetection of specific cell-free DNA.


Subject(s)
Acinetobacter , Biosensing Techniques , Cell-Free Nucleic Acids , Colorectal Neoplasms , DNA, Neoplasm , Animals , Humans , Mice , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , DNA, Neoplasm/analysis , Mutation , Acinetobacter/genetics , Cell-Free Nucleic Acids/analysis , Bioengineering
10.
Bio Protoc ; 13(15): e4782, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37575396

ABSTRACT

For several decades, aging in Saccharomyces cerevisiae has been studied in hopes of understanding its causes and identifying conserved pathways that also drive aging in multicellular eukaryotes. While the short lifespan and unicellular nature of budding yeast has allowed its aging process to be observed by dissecting mother cells away from daughter cells under a microscope, this technique does not allow continuous, high-resolution, and high-throughput studies to be performed. Here, we present a protocol for constructing microfluidic devices for studying yeast aging that are free from these limitations. Our approach uses multilayer photolithography and soft lithography with polydimethylsiloxane (PDMS) to construct microfluidic devices with distinct single-cell trapping regions as well as channels for supplying media and removing recently born daughter cells. By doing so, aging yeast cells can be imaged at scale for the entirety of their lifespans, and the dynamics of molecular processes within single cells can be simultaneously tracked using fluorescence microscopy. Key features This protocol requires access to a photolithography lab in a cleanroom facility. Photolithography process for patterning photoresist on silicon wafers with multiple different feature heights. Soft lithography process for making PDMS microfluidic devices from silicon wafer templates.

11.
bioRxiv ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37461504

ABSTRACT

Cellular longevity is regulated by both genetic and environmental factors. However, the interactions of these factors in the context of aging remain largely unclear. Here, we formulate a mathematical model for dynamic glucose modulation of a core gene circuit in yeast aging, which not only guided the design of pro-longevity interventions, but also revealed the theoretical principles underlying these interventions. We introduce the dynamical systems theory to capture two general means for promoting longevity - the creation of a stable fixed point in the "healthy" state of the cell and the dynamic stabilization of the system around this healthy state through environmental oscillations. Guided by the model, we investigate how both of these can be experimentally realized by dynamically modulating environmental glucose levels. The results establish a paradigm for theoretically analyzing the trajectories and perturbations of aging that can be generalized to aging processes in diverse cell types and organisms.

12.
Nat Cell Biol ; 25(6): 877-891, 2023 06.
Article in English | MEDLINE | ID: mdl-37231163

ABSTRACT

Although mucosal-associated invariant T (MAIT) cells provide rapid, innate-like responses, they are not pre-set, and memory-like responses have been described for MAIT cells following infections. The importance of metabolism for controlling these responses, however, is unknown. Here, following pulmonary immunization with a Salmonella vaccine strain, mouse MAIT cells expanded as separate CD127-Klrg1+ and CD127+Klrg1- antigen-adapted populations that differed in terms of their transcriptome, function and localization in lung tissue. These populations remained altered from steady state for months as stable, separate MAIT cell lineages with enhanced effector programmes and divergent metabolism. CD127+ MAIT cells engaged in an energetic, mitochondrial metabolic programme, which was critical for their maintenance and IL-17A synthesis. This programme was supported by high fatty acid uptake and mitochondrial oxidation and relied on highly polarized mitochondria and autophagy. After vaccination, CD127+ MAIT cells protected mice against Streptococcus pneumoniae infection. In contrast, Klrg1+ MAIT cells had dormant but ready-to-respond mitochondria and depended instead on Hif1a-driven glycolysis to survive and produce IFN-γ. They responded antigen independently and participated in protection from influenza virus. These metabolic dependencies may enable tuning of memory-like MAIT cell responses for vaccination and immunotherapies.


Subject(s)
Mucosal-Associated Invariant T Cells , Mice , Animals , Mucosal-Associated Invariant T Cells/metabolism , Lung
13.
Science ; 380(6643): 376-381, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37104589

ABSTRACT

Synthetic biology enables the design of gene networks to confer specific biological functions, yet it remains a challenge to rationally engineer a biological trait as complex as longevity. A naturally occurring toggle switch underlies fate decisions toward either nucleolar or mitochondrial decline during the aging of yeast cells. We rewired this endogenous toggle to engineer an autonomous genetic clock that generates sustained oscillations between the nucleolar and mitochondrial aging processes in individual cells. These oscillations increased cellular life span through the delay of the commitment to aging that resulted from either the loss of chromatin silencing or the depletion of heme. Our results establish a connection between gene network architecture and cellular longevity that could lead to rationally designed gene circuits that slow aging.


Subject(s)
Cellular Senescence , Genes, Synthetic , Longevity , Saccharomyces cerevisiae , Cellular Senescence/genetics , Gene Regulatory Networks , Longevity/genetics , Models, Genetic , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Synthetic Biology
14.
Curr Opin Biotechnol ; 79: 102880, 2023 02.
Article in English | MEDLINE | ID: mdl-36621221

ABSTRACT

As engineered microbes are used in increasingly diverse applications across human health and bioproduction, the field of synthetic biology will need to focus on strategies that stabilize and contain the function of these populations within target environments. To this end, recent advancements have created layered sensing circuits that can compute cell survival, genetic contexts that are less susceptible to mutation, burden, and resource control circuits, and methods for population variability reduction. These tools expand the potential for real-world deployment of complex microbial systems by enhancing their environmental robustness and functional stability in the face of unpredictable host response and evolutionary pressure.


Subject(s)
Biological Evolution , Synthetic Biology , Humans , Synthetic Biology/methods , Mutation
15.
Elife ; 112022 Oct 04.
Article in English | MEDLINE | ID: mdl-36194205

ABSTRACT

Chromatin instability and protein homeostasis (proteostasis) stress are two well-established hallmarks of aging, which have been considered largely independent of each other. Using microfluidics and single-cell imaging approaches, we observed that, during the replicative aging of Saccharomyces cerevisiae, a challenge to proteostasis occurs specifically in the fraction of cells with decreased stability within the ribosomal DNA (rDNA). A screen of 170 yeast RNA-binding proteins identified ribosomal RNA (rRNA)-binding proteins as the most enriched group that aggregate upon a decrease in rDNA stability induced by inhibition of a conserved lysine deacetylase Sir2. Further, loss of rDNA stability induces age-dependent aggregation of rRNA-binding proteins through aberrant overproduction of rRNAs. These aggregates contribute to age-induced proteostasis decline and limit cellular lifespan. Our findings reveal a mechanism underlying the interconnection between chromatin instability and proteostasis stress and highlight the importance of cell-to-cell variability in aging processes.


Subject(s)
Saccharomyces cerevisiae Proteins , Silent Information Regulator Proteins, Saccharomyces cerevisiae , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Proteostasis , Chromatin/metabolism , Sirtuin 2/metabolism , Lysine/metabolism , Saccharomyces cerevisiae/metabolism , DNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
16.
Cell ; 185(17): 3263-3277.e15, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35931082

ABSTRACT

Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to "knock in" specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Bacteria/genetics , Escherichia coli/genetics , Gastrointestinal Microbiome/physiology , Mice , Transgenes
17.
Front Microbiol ; 13: 740259, 2022.
Article in English | MEDLINE | ID: mdl-35572643

ABSTRACT

Antibiotic treatments often fail to eliminate bacterial populations due to heterogeneity in how individual cells respond to the drug. In structured bacterial populations such as biofilms, bacterial metabolism and environmental transport processes lead to an emergent phenotypic structure and self-generated nutrient gradients toward the interior of the colony, which can affect cell growth, gene expression and susceptibility to the drug. Even in single cells, survival depends on a dynamic interplay between the drug's action and the expression of resistance genes. How expression of resistance is coordinated across populations in the presence of such spatiotemporal environmental coupling remains elusive. Using a custom microfluidic device, we observe the response of spatially extended microcolonies of tetracycline-resistant E. coli to precisely defined dynamic drug regimens. We find an intricate interplay between drug-induced changes in cell growth and growth-dependent expression of resistance genes, resulting in the redistribution of metabolites and the reorganization of growth patterns. This dynamic environmental feedback affects the regulation of drug resistance differently across the colony, generating dynamic phenotypic structures that maintain colony growth during exposure to high drug concentrations and increase population-level resistance to subsequent exposures. A mathematical model linking metabolism and the regulation of gene expression is able to capture the main features of spatiotemporal colony dynamics. Uncovering the fundamental principles that govern collective mechanisms of antibiotic resistance in spatially extended populations will allow the design of optimal drug regimens to counteract them.

18.
Cell Syst ; 13(5): 365-375.e5, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35320733

ABSTRACT

A major goal in synthetic biology is coordinating cellular behavior using cell-cell interactions; however, designing and testing complex genetic circuits that function only in large populations remains challenging. Although directed evolution has commonly supplemented rational design methods for synthetic gene circuits, this method relies on the efficient screening of mutant libraries for desired phenotypes. Recently, multiple techniques have been developed for identifying dynamic phenotypes from large, pooled libraries. These technologies have advanced library screening for single-cell, time-varying phenotypes but are currently incompatible with population-level phenotypes dependent on cell-cell communication. Here, we utilize directed mutagenesis and multiplexed microfluidics to develop an arrayed-screening workflow for dynamic, population-level genetic circuits. Specifically, we create a mutant library of an existing oscillator, the synchronized lysis circuit, and discover variants with different period-amplitude characteristics. Lastly, we utilize our screening workflow to construct a transcriptionally regulated synchronized oscillator that functions over long timescales. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Gene Regulatory Networks , Synthetic Biology , Gene Library , Gene Regulatory Networks/genetics , Microfluidics , Mutagenesis , Synthetic Biology/methods
19.
J Vis Exp ; (176)2021 10 29.
Article in English | MEDLINE | ID: mdl-34779438

ABSTRACT

Cell-free gene expression offers the power of biology without the complications of a living organism. Although many such gene expression systems exist, most are quite expensive to buy and/or require special equipment and finely honed expertise to produce effectively. This protocol describes a method to produce bacterial cell-free lysate that supports high levels of gene expression, using only standard laboratory equipment and requiring minimal processing. The method uses an Escherichia coli strain producing an endolysin that does not affect growth, but which efficiently lyses a harvested cell pellet following a simple freeze-thaw cycle. The only further processing required is a brief incubation followed by centrifugation to clear the autolysate of cellular debris. Dynamic gene circuits can be achieved through heterologous expression of the ClpX protease in the cells before harvesting. An E. coli strain lacking the lacZ gene can be used for high-sensitivity, cell-free biosensing applications using a colorimetric or fluorescent readout. The entire protocol requires as few as 8-9 hours, with only 1-2 hours of hands-on labor from inoculation to completion. By reducing the cost and time to obtain cell-free lysate, this method should increase the affordability of cell-free gene expression for various applications.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Cell-Free System/metabolism , Costs and Cost Analysis , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
20.
Science ; 371(6536)2021 03 26.
Article in English | MEDLINE | ID: mdl-33766858

ABSTRACT

Microbial roles in cancer formation, diagnosis, prognosis, and treatment have been disputed for centuries. Recent studies have provocatively claimed that bacteria, viruses, and/or fungi are pervasive among cancers, key actors in cancer immunotherapy, and engineerable to treat metastases. Despite these findings, the number of microbes known to directly cause carcinogenesis remains small. Critically evaluating and building frameworks for such evidence in light of modern cancer biology is an important task. In this Review, we delineate between causal and complicit roles of microbes in cancer and trace common themes of their influence through the host's immune system, herein defined as the immuno-oncology-microbiome axis. We further review evidence for intratumoral microbes and approaches that manipulate the host's gut or tumor microbiome while projecting the next phase of experimental discovery.


Subject(s)
Bacterial Physiological Phenomena , Microbiota , Neoplasms/microbiology , Neoplasms/therapy , Adaptive Immunity , Anti-Bacterial Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Bacteria/genetics , Carcinogenesis , Gastrointestinal Microbiome , Genetic Engineering , Host Microbial Interactions , Humans , Immunomodulation , Immunotherapy , Lymphoid Tissue/immunology , Neoplasms/immunology , Oncolytic Virotherapy , Tumor Microenvironment , Virus Physiological Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...