Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
iScience ; 27(4): 109524, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38577109

ABSTRACT

Homologous recombination (HR) protects replication forks (RFs) and repairs DNA double-strand breaks (DSBs). Within HR, BRCA2 regulates RAD51 via two interaction regions: the BRC repeats to form filaments on single-stranded DNA and exon 27 (Ex27) to stabilize the filament. Here, we identified a RAD51 S181P mutant that selectively disrupted the RAD51-Ex27 association while maintaining interaction with BRC repeat and proficiently forming filaments capable of DNA binding and strand invasion. Interestingly, RAD51 S181P was defective for RF protection/restart but proficient for DSB repair. Our data suggest that Ex27-mediated stabilization of RAD51 filaments is required for the protection of RFs, while it seems dispensable for the repair of DSBs.

2.
Cell Rep ; 43(1): 113637, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38175749

ABSTRACT

TREX2, a 3'-5' exonuclease, is a part of the DNA damage tolerance (DDT) pathway that stabilizes replication forks (RFs) by ubiquitinating PCNA along with the ubiquitin E3 ligase RAD18 and other DDT factors. Mismatch repair (MMR) corrects DNA polymerase errors, including base mismatches and slippage. Here we demonstrate that TREX2 deletion reduces mutations in cells upon exposure to genotoxins, including those that cause base lesions and DNA polymerase slippage. Importantly, we show that TREX2 generates most of the spontaneous mutations in MMR-mutant cells derived from mice and people. TREX2-induced mutagenesis is dependent on the nuclease and DNA-binding attributes of TREX2. RAD18 deletion also reduces spontaneous mutations in MMR-mutant cells, albeit to a lesser degree. Inactivation of both MMR and TREX2 additively increases RF stalls, while it decreases DNA breaks, consistent with a synthetic phenotype.


Subject(s)
DNA-Directed DNA Polymerase , Mutagens , Humans , Mice , Animals , Mutagenesis , DNA-Directed DNA Polymerase/metabolism , Mutation , Ubiquitin/metabolism , DNA Replication , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Phosphoproteins/genetics , DNA-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
3.
Cell Rep ; 35(6): 109098, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979621

ABSTRACT

During the repeated cycles of damage and repair in many muscle disorders, including Duchenne muscular dystrophy (DMD), the muscle stem cell (MuSC) pool becomes less efficient at responding to and repairing damage. The underlying mechanism of such stem cell dysfunction is not fully known. Here, we demonstrate that the distinct early telomere shortening of diseased MuSCs in both mice and young DMD patients is associated with aberrant NF-κB activation. We find that prolonged NF-κB activation in MuSCs in chronic injuries leads to shortened telomeres and Ku80 dysregulation and results in severe skeletal muscle defects. Our studies provide evidence of a role for NF-κB in regulating stem-cell-specific telomere length, independently of cell replication, and could be a congruent mechanism that is applicable to additional tissues and/or diseases characterized by systemic chronic inflammation.


Subject(s)
NF-kappa B/metabolism , Stem Cells/metabolism , Telomere Shortening/genetics , Animals , Cell Proliferation , Disease Models, Animal , Humans , Mice
4.
Cancers (Basel) ; 13(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33804958

ABSTRACT

RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in their levels are often observed in tumors with numerous oncogenic RBPs identified in recent years. Musashi1 (Msi1) is an RBP and stem cell gene that controls the balance between self-renewal and differentiation. High Msi1 levels have been observed in multiple tumors including glioblastoma and are often associated with poor patient outcomes and tumor growth. A comprehensive genomic analysis identified a network of cell cycle/division and DNA replication genes and established these processes as Msi1's core regulatory functions in glioblastoma. Msi1 controls this gene network via two mechanisms: direct interaction and indirect regulation mediated by the transcription factors E2F2 and E2F8. Moreover, glioblastoma lines with Msi1 knockout (KO) displayed increased sensitivity to cell cycle and DNA replication inhibitors. Our results suggest that a drug combination strategy (Msi1 + cell cycle/DNA replication inhibitors) could be a viable route to treat glioblastoma.

5.
Mol Cell Oncol ; 8(2): 1881394, 2021.
Article in English | MEDLINE | ID: mdl-33860084

ABSTRACT

Three prime Repair Exonuclease 2 (Trex2) alters replication fork (RF) stability and mutation levels in cells defective for homologous recombination (HR). Trex2 has multiple functions that can either cause or supress RF instability in cells with different HR-defects. Why does Trex2 have such diverse effects on RF maintenance?

6.
Clin Colorectal Cancer ; 20(1): e61-e70, 2021 03.
Article in English | MEDLINE | ID: mdl-33132009

ABSTRACT

BACKGROUND: We previously showed that lifelong rapamycin treatment of short-lived ApcMin/+ mice, a model for familial adenomatous polyposis, resulted in a normal lifespan. ApcMin/+ mice develop colon polyps with a low frequency but can be converted to a colon cancer model by dextran sodium sulfate (DSS) treatments (ApcMin/+-DSS model). MATERIALS AND METHODS: We asked, what effect would pretreatment of ApcMin/+ mice with chronic rapamycin prior to DSS exposure have on survival and colonic neoplasia? RESULTS: Forty-two ppm enteric formulation of rapamycin diet exacerbated the temporary weight loss associated with DSS treatment in both sexes. However, our survival studies showed that chronic rapamycin treatment significantly extended lifespan of ApcMin/+-DSS mice (both sexes) by reductions in colon neoplasia and prevention of anemia. Rapamycin also had prophylactic effects on colon neoplasia induced by azoxymethane and DSS in C57BL/6 males and females. Immunoblot assays showed the expected inhibition of complex 1 of mechanistic or mammalian target of rapamycin (mTORC1) and effectors (S6K→rpS6 and S6K→eEF2K→eEF2) in colon by lifelong rapamycin treatments. To address the question of cell types affected by chronic enteric rapamycin treatment, immunohistochemistry analyses demonstrated that crypt cells had a prominent reduction in rpS6 phosphorylation and increase in eEF2 phosphorylation relative controls. CONCLUSION: These data indicate that enteric rapamycin prevents or delays colon neoplasia in ApcMin/+-DSS mice through inhibition of mTORC1 in the crypt cells.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Carcinogenesis/drug effects , Colonic Neoplasms/prevention & control , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Sirolimus/pharmacology , Animals , Carcinogenesis/genetics , Colon/drug effects , Colon/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Disease Models, Animal , Female , Heterozygote , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Transgenic , Sirolimus/therapeutic use , Survival Analysis , Time Factors
7.
Cell Rep ; 33(12): 108543, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33357432

ABSTRACT

DNA damage tolerance (DDT) and homologous recombination (HR) stabilize replication forks (RFs). RAD18/UBC13/three prime repair exonuclease 2 (TREX2)-mediated proliferating cell nuclear antigen (PCNA) ubiquitination is central to DDT, an error-prone lesion bypass pathway. RAD51 is the recombinase for HR. The RAD51 K133A mutation increased spontaneous mutations and stress-induced RF stalls and nascent strand degradation. Here, we report in RAD51K133A cells that this phenotype is reduced by expressing a TREX2 H188A mutation that deletes its exonuclease activity. In RAD51K133A cells, knocking out RAD18 or overexpressing PCNA reduces spontaneous mutations, while expressing ubiquitination-incompetent PCNAK164R increases mutations, indicating DDT as causal. Deleting TREX2 in cells deficient for the RF maintenance proteins poly(ADP-ribose) polymerase 1 (PARP1) or FANCB increased nascent strand degradation that was rescued by TREX2H188A, implying that TREX2 prohibits degradation independent of catalytic activity. A possible explanation for this occurrence is that TREX2H188A associates with UBC13 and ubiquitinates PCNA, suggesting a dual role for TREX2 in RF maintenance.


Subject(s)
DNA Replication , Exodeoxyribonucleases/metabolism , Mutation , Phosphoproteins/metabolism , Rad51 Recombinase/metabolism , Animals , Exodeoxyribonucleases/genetics , Humans , Male , Mice , Phosphoproteins/genetics , Rad51 Recombinase/biosynthesis , Rad51 Recombinase/genetics , Transfection
8.
Aging Cell ; 19(2): e13088, 2020 02.
Article in English | MEDLINE | ID: mdl-31903726

ABSTRACT

Acarbose blocks the digestion of complex carbohydrates, and the NIA Intervention Testing Program (ITP) found that it improved survival when fed to mice. Yet, we do not know if lifespan extension was caused by its effect on metabolism with regard to the soma or cancer suppression. Cancer caused death for ~80% of ITP mice. The ITP found rapamycin, an inhibitor to the pro-growth mTORC1 (mechanistic target of rapamycin complex 1) pathway, improved survival and it suppressed tumors in Apc+/Min mice providing a plausible rationale to ask if acarbose had a similar effect. Apc+/Min is a mouse model prone to intestinal polyposis and a mimic of familial adenomatous polyposis in people. Polyp-associated anemia contributed to their death. To address this knowledge gap, we fed two doses of acarbose to Apc+/Min mice. Acarbose improved median survival at both doses. A cross-sectional analysis was performed next. At both doses, ACA fed mice exhibited reduced intestinal crypt depth, weight loss despite increased food consumption and reduced postprandial blood glucose and plasma insulin, indicative of improved insulin sensitivity. Dose-independent and dose-dependent compensatory liver responses were observed for AMPK and mTORC1 activities, respectively. Only mice fed the high dose diet exhibited reductions in tumor number with higher hematocrits. Because low-dose acarbose improved lifespan but failed to reduced tumors, its effects seem to be independent of cancer. These data implicate the importance of improved carbohydrate metabolism on survival.


Subject(s)
Acarbose/pharmacology , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli/drug therapy , Longevity/drug effects , AMP-Activated Protein Kinase Kinases , Acarbose/blood , Acarbose/therapeutic use , Adenomatous Polyposis Coli/mortality , Adenomatous Polyposis Coli/physiopathology , Adenomatous Polyposis Coli Protein/blood , Animals , Chromatography, High Pressure Liquid , Glucose/metabolism , Insulin/metabolism , Liver/drug effects , Liver/metabolism , Liver/physiopathology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6/metabolism , Somatomedins/metabolism , Tandem Mass Spectrometry
9.
Aging Pathobiol Ther ; 2(4): 187-194, 2020.
Article in English | MEDLINE | ID: mdl-33834178

ABSTRACT

BACKGROUND: Apc Min/+ mice model familial adenomatous polyposis (FAP), a disease that causes numerous colon polyps leading to colorectal cancer. We previously showed that chronic treatment of Apc Min/+ females with the anti-aging drug, rapamycin, restored a normal lifespan through reduced polyposis and anemia prevention. Lifespan extension by chronic rapamycin in wildtype UM-HET3 mice is sex-dependent with females gaining the most benefit. Whether Apc Min/+ mice have a similar sex-dependent response to chronic mTOR inhibition is not known. METHODS: To address this knowledge gap and gain deeper insight into how chronic mTOR inhibition prevents intestinal polyposis, we compared male and female Apc Min/+ mice responses to chronic treatment with a rapamycin-containing diet. Animals were fed a diet containing either 42 ppm microencapsulate rapamycin or empty capsules, one group was used to determine lifespan and a second group with similar treatment was harvested at 16 weeks of age for cross-sectional studies. RESULTS: We found that the survival of males is greater than females in this setting (P < 0.0197). To explore the potential basis for this difference we analyzed factors affected by chronic rapamycin. Immunoblot assays showed that males and females exhibited approximately the same level of mTORC1 inhibition using phosphorylation of ribosomal protein S6 (rpS6) as an indirect measure. Immunohistochemistry assays of rpS6 phosphorylation showed that rapamycin reduction of mTORC1 activity was on the same level, with the most prominent difference being in intestinal crypt Paneth cells in both sexes. Chronic rapamycin also reduced crypt depths in both male and female Apc Min/+ mice (P < 0.0001), consistent with reduced crypt epithelial cell proliferation. Finally, chronic rapamycin prevented anemia equally in males and females. CONCLUSIONS: In males and females, these findings link rapamycin-mediated intestinal polyposis prevention with mTORC1 inhibition in Paneth cells and concomitant reduced epithelial cell proliferation.

10.
Aging Cell ; 19(3): e13072, 2020 03.
Article in English | MEDLINE | ID: mdl-31737985

ABSTRACT

ERCC1 (excision repair cross complementing-group 1) is a mammalian endonuclease that incises the damaged strand of DNA during nucleotide excision repair and interstrand cross-link repair. Ercc1-/Δ mice, carrying one null and one hypomorphic Ercc1 allele, have been widely used to study aging due to accelerated aging phenotypes in numerous organs and their shortened lifespan. Ercc1-/Δ mice display combined features of human progeroid and cancer-prone syndromes. Although several studies report cellular senescence and apoptosis associated with the premature aging of Ercc1-/Δ mice, the link between these two processes and their physiological relevance in the phenotypes of Ercc1-/Δ mice are incompletely understood. Here, we show that ERCC1 depletion, both in cultured human fibroblasts and the skin of Ercc1-/Δ mice, initially induces cellular senescence and, importantly, increased expression of several SASP (senescence-associated secretory phenotype) factors. Cellular senescence induced by ERCC1 deficiency was dependent on activity of the p53 tumor-suppressor protein. In turn, TNFα secreted by senescent cells induced apoptosis, not only in neighboring ERCC1-deficient nonsenescent cells, but also cell autonomously in the senescent cells themselves. In addition, expression of the stem cell markers p63 and Lgr6 was significantly decreased in Ercc1-/Δ mouse skin, where the apoptotic cells are localized, compared to age-matched wild-type skin, possibly due to the apoptosis of stem cells. These data suggest that ERCC1-depleted cells become susceptible to apoptosis via TNFα secreted from neighboring senescent cells. We speculate that parts of the premature aging phenotypes and shortened health- or lifespan may be due to stem cell depletion through apoptosis promoted by senescent cells.


Subject(s)
Apoptosis/genetics , Cellular Senescence/genetics , DNA-Binding Proteins/deficiency , Endonucleases/deficiency , Fibroblasts/metabolism , Skin/metabolism , Stem Cells/metabolism , Animals , Cells, Cultured , DNA-Binding Proteins/genetics , Endonucleases/genetics , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Signal Transduction/genetics , Transfection , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
11.
Nat Commun ; 9(1): 2025, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29795289

ABSTRACT

Yeast Rad1-Rad10 (XPF-ERCC1 in mammals) incises UV, oxidation, and cross-linking agent-induced DNA lesions, and contributes to multiple DNA repair pathways. To determine how Rad1-Rad10 catalyzes inter-strand crosslink repair (ICLR), we examined sensitivity to ICLs from yeast deleted for SAW1 and SLX4, which encode proteins that interact physically with Rad1-Rad10 and bind stalled replication forks. Saw1, Slx1, and Slx4 are critical for replication-coupled ICLR in mus81 deficient cells. Two rad1 mutations that disrupt interactions between Rpa1 and Rad1-Rad10 selectively disable non-nucleotide excision repair (NER) function, but retain UV lesion repair. Mutations in the analogous region of XPF also compromised XPF interactions with Rpa1 and Slx4, and are proficient in NER but deficient in ICLR and direct repeat recombination. We propose that Rad1-Rad10 makes distinct contributions to ICLR depending on cell cycle phase: in G1, Rad1-Rad10 removes ICL via NER, whereas in S/G2, Rad1-Rad10 facilitates NER-independent replication-coupled ICLR.


Subject(s)
DNA Damage/genetics , DNA Repair Enzymes/metabolism , DNA Repair/physiology , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Single-Strand Specific DNA and RNA Endonucleases/metabolism , Animals , CHO Cells , Cell Cycle/genetics , Cricetulus , Cross-Linking Reagents/toxicity , DNA Damage/drug effects , DNA Damage/radiation effects , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Intravital Microscopy , Mutagenesis, Site-Directed , Mutation , Saccharomyces cerevisiae Proteins/genetics , Single-Strand Specific DNA and RNA Endonucleases/genetics , Ultraviolet Rays/adverse effects
12.
AIMS Genet ; 5(4): 192-211, 2018.
Article in English | MEDLINE | ID: mdl-31435521

ABSTRACT

Homologous recombination (HR) repairs DNA double strand breaks (DSBs) and stabilizes replication forks (RFs). RAD51 is the recombinase for the HR pathway. To preserve genomic integrity, RAD51 forms a filament on the 3' end of a DSB and on a single-stranded DNA (ssDNA) gap. But unregulated HR results in undesirable chromosomal rearrangements. This review describes the multiple mechanisms that regulate HR with a focus on those mechanisms that promote and contain RAD51 filaments to limit chromosomal rearrangements. If any of these pathways break down and HR becomes unregulated then disease, primarily cancer, can result.

13.
Mutat Res ; 788: 1, 2016 06.
Article in English | MEDLINE | ID: mdl-27241226
14.
Oncotarget ; 7(29): 46433-46447, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27340773

ABSTRACT

Benzene is a common environmental toxin and its metabolite, 1-4-Benzoquinone (BQ) causes hematopoietic cancers like myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). BQ has not been comprehensively assessed for its impact on genome maintenance, limiting our understanding of the true health risks associated with benzene exposure and our ability to identify people with increased sensitivity to this genotoxin. Here we analyze the impact BQ exposure has on wild type and DNA repair-defective mouse embryonic stem (ES) cells and wild type human cells. We find that double strand break (DSB) repair and replication fork maintenance pathways including homologous recombination (HR) and Fanconi anemia (FA) suppress BQ toxicity. BQ-induced damage efficiently stalls replication forks, yet poorly induces ATR/DNA-PKCS responses. Furthermore, the pattern of BQ-induced γH2AX and 53BP1foci is consistent with the formation of poly(ADP-ribose) polymerase 1 (PARP1)-stabilized regressed replication forks. At a biochemical level, BQ inhibited topoisomerase 1 (topo1)-mediated DNA ligation and nicking in vitro; thus providing mechanism for the cellular phenotype. These data are consistent with a model that proposes BQ interferes with type I topoisomerase's ability to maintain replication fork restart and progression leading to chromosomal instability that has the potential to cause hematopoietic cancers like MDS and AML.


Subject(s)
Benzoquinones/toxicity , DNA Replication/drug effects , Mutagens/toxicity , Animals , Cell Line , DNA Breaks, Double-Stranded/drug effects , Humans , Mice
15.
Article in English | MEDLINE | ID: mdl-27237224

ABSTRACT

Rapamycin inhibits mechanistic (or mammalian) target of rapamycin (mTOR) that promotes protein production in cells by facilitating ribosome biogenesis (RiBi) and eIF4E-mediated 5'cap mRNA translation. Chronic treatment with encapsulated rapamycin (eRapa) extended health and life span for wild-type and cancer-prone mice. Yet, the long-term consequences of chronic eRapa treatment are not known at the organ level. Here, we report our observations of chronic eRapa treatment on mTORC1 signaling and RiBi in mouse colon and visceral adipose. As expected, chronic eRapa treatment decreased detection of phosphorylated mTORC1/S6K substrate, ribosomal protein (rpS6) in colon and fat. However, in colon, contrary to expectations, there was an upregulation of 18S rRNA and some ribosomal protein genes (RPGs) suggesting increased RiBi. Among RPGs, eRapa increases rpl22l1 mRNA but not its paralog rpl22. Furthermore, there was an increase in the cap-binding protein, eIF4E relative to its repressor 4E-BP1 suggesting increased translation. By comparison, in fat, there was a decrease in the level of 18S rRNA (opposite to colon), while overall mRNAs encoding ribosomal protein genes appeared to increase, including rpl22, but not rpl22l1 (opposite to colon). In fat, there was a decrease in eIF4E relative to actin (opposite to colon) but also an increase in the eIF4E/4E-BP1 ratio likely due to reductions in 4E-BP1 at our lower eRapa dose (similar to colon). Thus, in contrast to predictions of decreased protein production seen in cell-based studies, we provide evidence that colon from chronically treated mice exhibited an adaptive 'pseudo-anabolic' state, which is only partially present in fat, which might relate to differing tissue levels of rapamycin, cell-type-specific responses, and/or strain differences.

16.
Transl Cancer Res ; 5(6): 685-691, 2016 Dec.
Article in English | MEDLINE | ID: mdl-30984573

ABSTRACT

p53 is a transcriptional regulator that responds to cellular stresses to suppress oncogenesis, but some of these responses can have unintended consequences that influence non-cancer-related aging processes. The impact of these consequences is not well understood-partly due to the many complex processes that influence p53 function and partly due to the vast array of processes that p53 affects. p53 has the potential to both accelerate and hinder cellular aging processes, which would likely have antithetical biological outcomes with regard to organismal aging. To accelerate aging, p53 induces apoptosis or cell cycle arrest as a prerequisite to cellular senescence; both can impair the mobilization of stem and progenitor cell populations. To suppress aging, p53 inhibits unregulated proliferation pathways that could lead to cellular senescence and a senescence-associated secretory phenotype (SASP), which creates a pro-inflammatory and degenerative tissue milieu. A review of mouse models supports both possibilities, highlighting the complexity of the p53 influence over organismal aging. A deeper knowledge of how p53 integrates and is integrated with various biological processes will improve our understanding of its influence over the aging process.

17.
Aging Cell ; 14(6): 945-56, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26315673

ABSTRACT

The mammalian (mechanistic) target of rapamycin (mTOR) regulates critical immune processes that remain incompletely defined. Interest in mTOR inhibitor drugs is heightened by recent demonstrations that the mTOR inhibitor rapamycin extends lifespan and healthspan in mice. Rapamycin or related analogues (rapalogues) also mitigate age-related debilities including increasing antigen-specific immunity, improving vaccine responses in elderly humans, and treating cancers and autoimmunity, suggesting important new clinical applications. Nonetheless, immune toxicity concerns for long-term mTOR inhibition, particularly immunosuppression, persist. Although mTOR is pivotal to fundamental, important immune pathways, little is reported on immune effects of mTOR inhibition in lifespan or healthspan extension, or with chronic mTOR inhibitor use. We comprehensively analyzed immune effects of rapamycin as used in lifespan extension studies. Gene expression profiling found many and novel changes in genes affecting differentiation, function, homeostasis, exhaustion, cell death, and inflammation in distinct T- and B-lymphocyte and myeloid cell subpopulations. Immune functions relevant to aging and inflammation, and to cancer and infections, and innate lymphoid cell effects were validated in vitro and in vivo. Rapamycin markedly prolonged lifespan and healthspan in cancer- and infection-prone mice supporting disease mitigation as a mechanism for mTOR suppression-mediated longevity extension. It modestly altered gut metagenomes, and some metagenomic effects were linked to immune outcomes. Our data show novel mTOR inhibitor immune effects meriting further studies in relation to longevity and healthspan extension.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Longevity/drug effects , Myeloid Cells/immunology , Sirolimus/pharmacology , T-Lymphocytes, Regulatory/immunology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Aging/drug effects , Animals , Cell Differentiation/drug effects , Female , Flagellin/immunology , Gastrointestinal Microbiome , Gene Expression Profiling , Immunologic Memory/immunology , Interleukins/metabolism , Longevity/immunology , Male , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/biosynthesis , Spleen/cytology , Spleen/immunology , T-Lymphocytes, Regulatory/cytology , TOR Serine-Threonine Kinases/immunology , Interleukin-22
18.
Oncotarget ; 6(18): 15802-13, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26158292

ABSTRACT

Mechanistic target of rapamycin (mTOR) is a kinase found in a complex (mTORC1) that enables macromolecular synthesis and cell growth and is implicated in cancer etiology. The rapamycin-FK506 binding protein 12 (FKBP12) complex allosterically inhibits mTORC1. In response to stress, p53 inhibits mTORC1 through a separate pathway involving cell signaling and amino acid sensing. Thus, these different mechanisms could be additive. Here we show that p53 improved the ability of rapamycin to: 1) extend mouse life span, 2) suppress ionizing radiation (IR)-induced senescence-associated secretory phenotype (SASP) and 3) increase the levels of amino acids and citric acid in mouse embryonic stem (ES) cells. This additive effect could have implications for cancer treatment since rapamycin and p53 are anti-oncogenic.


Subject(s)
Sirolimus/pharmacology , Tumor Suppressor Protein p53/metabolism , Animals , Cell Line , Cell Proliferation , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Female , Fibroblasts , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction , Sirolimus/blood , Sirolimus/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/biosynthesis , Tumor Suppressor Protein p53/genetics
19.
Cancer Prev Res (Phila) ; 8(5): 400-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25736275

ABSTRACT

Cancer prevention is a cost-effective alternative to treatment. In mice, the mTOR inhibitor rapamycin prevents distinct spontaneous, noninflammatory cancers, making it a candidate broad-spectrum cancer prevention agent. We now show that oral microencapsulated rapamycin (eRapa) prevents skin cancer in dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) carcinogen-induced, inflammation-driven carcinogenesis. eRapa given before DMBA/TPA exposure significantly increased tumor latency, reduced papilloma prevalence and numbers, and completely inhibited malignant degeneration into squamous cell carcinoma. Rapamycin is primarily an mTORC1-specific inhibitor, but eRapa did not reduce mTORC1 signaling in skin or papillomas, and did not reduce important proinflammatory factors in this model, including p-Stat3, IL17A, IL23, IL12, IL1ß, IL6, or TNFα. In support of lack of mTORC1 inhibition, eRapa did not reduce numbers or proliferation of CD45(-)CD34(+)CD49f(mid) skin cancer initiating stem cells in vivo and marginally reduced epidermal hyperplasia. Interestingly, eRapa reduced DMBA/TPA-induced skin DNA damage and the hras codon 61 mutation that specifically drives carcinogenesis in this model, suggesting reduction of DNA damage as a cancer prevention mechanism. In support, cancer prevention and DNA damage reduction effects were lost when eRapa was given after DMBA-induced DNA damage in vivo. eRapa afforded picomolar concentrations of rapamycin in skin of DMBA/TPA-exposed mice, concentrations that also reduced DMBA-induced DNA damage in mouse and human fibroblasts in vitro. Thus, we have identified DNA damage reduction as a novel mechanism by which rapamycin can prevent cancer, which could lay the foundation for its use as a cancer prevention agent in selected human populations.


Subject(s)
Carcinogenesis/drug effects , Carcinogens , DNA Damage/drug effects , Inflammation , Sirolimus/administration & dosage , Skin Neoplasms/etiology , Skin Neoplasms/prevention & control , 3T3 Cells , 9,10-Dimethyl-1,2-benzanthracene , Administration, Oral , Animals , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Cells, Cultured , Chemoprevention , Down-Regulation/drug effects , Down-Regulation/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Skin Neoplasms/chemically induced , Skin Neoplasms/genetics
20.
Int J Mol Sci ; 16(1): 966-89, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25569081

ABSTRACT

Hematopoietic stem cells (HSCs) are responsible for the continuous regeneration of all types of blood cells, including themselves. To ensure the functional and genomic integrity of blood tissue, a network of regulatory pathways tightly controls the proliferative status of HSCs. Nevertheless, normal HSC aging is associated with a noticeable decline in regenerative potential and possible changes in other functions. Myelodysplastic syndrome (MDS) is an age-associated hematopoietic malignancy, characterized by abnormal blood cell maturation and a high propensity for leukemic transformation. It is furthermore thought to originate in a HSC and to be associated with the accrual of multiple genetic and epigenetic aberrations. This raises the question whether MDS is, in part, related to an inability to adequately cope with DNA damage. Here we discuss the various components of the cellular response to DNA damage. For each component, we evaluate related studies that may shed light on a potential relationship between MDS development and aberrant DNA damage response/repair.


Subject(s)
DNA Damage , Myelodysplastic Syndromes/pathology , Aging , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Repair , Epigenesis, Genetic , Genomic Instability , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...