Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Exp Zool A Ecol Integr Physiol ; 341(3): 219-229, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38084833

ABSTRACT

This review article includes a literature review of synteny analysis of the amphibian gonadotropin-releasing hormone (GnRH) genes, the distribution of GnRH 1 and GnRH2 neurons in the central nervous system of amphibians, the function and regulation of hypophysiotropic GnRH1, and the function of GnRH1 in amphibian reproductive behaviors. It is generally accepted that GnRH is the key regulator of the hypothalamic-pituitary-gonadal axis. Three independent GnRH genes, GnRH1, GnRH2, and GnRH3, have been identified in vertebrates. Previous genome synteny analyses suggest that there are likely just two genes, gnrh1 and gnrh2, in amphibians. In three groups of amphibians: Anura, Urodela, and Gymnophiona, the distributions of GnRH1 and GnRH2 neurons in the central nervous system have also been previously reported. Moreover, these neuronal networks were determined to be structurally independent in all species examined. The somata of GnRH1 neurons are located in the terminal nerve, medial septum (MS), and preoptic area (POA), and some GnRH1 neurons in the MS and POA project into the median eminence. In contrast, the somata of GnRH2 neurons are located in the midbrain tegmentum. In amphibians, GnRH1 neurons originate from the embryonic olfactory placode, while GnRH2 neurons originate from the midbrain. The characterization and feedback regulation mechanisms of hypophysiotropic GnRH1 neurons in amphibians, the involvement of GnRH1 in amphibian reproductive behavior, and its possible mechanism of action should be elucidated in future.


Subject(s)
Gonadotropin-Releasing Hormone , Reproduction , Animals , Gonadotropin-Releasing Hormone/genetics , Reproduction/physiology , Vertebrates , Amphibians
2.
Antibiotics (Basel) ; 12(8)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37627761

ABSTRACT

Antimicrobial peptides (AMPs) act directly on pathogens and maintain the anti-inflammatory effects and activation of immunocompetent cells. Therefore, the activation of the immune system in poultry via the elevation of endogenous AMPs has been attempted. In this study, we focused on the host defense mechanisms in the bursa of Fabricius (BF) of Japanese quail, cloned the cDNA of cathelicidin (CATH)-1 to -3, and analyzed their expression sites. In situ hybridization experiments revealed the mRNA expression of the CATHs in the interfollicular epithelium surrounding the lumen of the quail BF, which suggests that each CATH may exert its antimicrobial action directly in the BF. The intravenous injection of bacterial lipoteichoic acid and lipopolysaccharide endotoxins into the quail promoted the mRNA expression of CATH-1 and CATH-3 in the BF. The addition of CATH-1 or CATH-2 at the time of the antigen injection into mice resulted in antiserum with high antibody titers. Ad libitum administration of butyrate, a short-chain fatty acid, in the drinking water induced an increase in CATH-2 mRNA expression in the BF under certain conditions. These results may improve the defense mechanisms of quail by stimulating CATH expression in the BF through their diet.

3.
Dev Growth Differ ; 64(9): 474-485, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36398337

ABSTRACT

Urodele amphibians have the ability to regenerate several organs, including the brain. For this reason, the research on neurogenesis in these species after ablation of some parts of the brain has markedly progressed. However, detailed information on the characteristics and fate of proliferated cells as well as the function of newly generated neurons under normal conditions is still limited. In this study, we focused on investigating the proliferative and neurogenic zones as well as the fate of proliferated cells in the adult brain of the Japanese red-bellied newt to clarify the significance of neurogenesis in adulthood. We found that the proximal region of the lateral ventricles in the telencephalon and the preoptic area in the diencephalon were the main sites for continuous cell proliferation in the adult brain. Furthermore, we characterized proliferative cells and analyzed neurogenesis through a combination of 5-ethynyl-2'-deoxyuridine (EdU) labeling and immunohistochemistry using antibodies against the stem cell marker Sox2 and neuronal marker NeuN. Twenty-four hours after EdU injection, most of the EdU-positive cells were Sox2-immunopositive, whereas, EdU-positive signals and NeuN-immunoreactivities were not colocalized. Two months after EdU injection, the colocalization ratio of EdU-positive signals with Sox2-immunoreactivities decreased to approximately 10%, whereas the ratio of colocalization of EdU-positive signals with NeuN-immunoreactivities increased to approximately 60%. Furthermore, a portion of the EdU-incorporated cells developed into γ-aminobutyric acid-producing cells, which are assumed to function as interneurons. On the basis of these results, the significance of newly generated neurons was discussed with special reference to their reproductive behavior.


Subject(s)
Neurons , Telencephalon , Animals , Neurons/physiology , Neurogenesis/physiology , Salamandridae , Cell Proliferation
4.
Antibiotics (Basel) ; 11(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36140018

ABSTRACT

Extracellular histones play a dual role-antimicrobial and cytotoxic-in host defense. In this study, we evaluated the antimicrobial and cytotoxic activities of histone H3 and identified the responsible molecular regions for these properties. Broth microdilution assays indicated that histone H3 exhibits growth inhibitory activity against not only Gram-negative and -positive bacteria but also fungi. Observations under scanning electron microscopy (SEM) revealed that histone H3 induced morphological abnormalities on the cell surface of a wide range of reference pathogens. MTT assays and SEM observations indicated that histone H3 has strong cytotoxic and cell lytic effects on mammalian normal, immortal, and tumor cell lines. Assays using synthetic peptides corresponding to fragments 1-34 (H3DP1), 35-68 (H3DP2), 69-102 (H3DP3), and 103-135 (H3DP4) of histone H3 molecule demonstrated that its antimicrobial activity and cytotoxicity are elicited by the H3DP2 and H3DP3 protein regions, respectively. Enzyme-linked endotoxin binding assays indicated that histones H3 and H3DP1, H3DP2, and H3DP4, but not H3DP3, exhibited high affinities toward lipopolysaccharide and lipoteichoic acid. Our findings are expected to contribute to the development of new histone H3-based peptide antibiotics that are not cytotoxic.

5.
Mol Cell Endocrinol ; 524: 111143, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33385474

ABSTRACT

In this review article, topics of the embryonic origin of the adenohypophysis and hypothalamus and the development of the hypothalamo-hypophyseal system for the completion of metamorphosis in amphibians are included. The primordium of the adenohypophysis as well as the primordium of the hypothalamus in amphibians is of neural origin as shown in other vertebrates, and both are closely associated with each other at the earliest stage of development. Metamorphosis progresses via the interaction of thyroid hormone and adrenal corticosteroids, of which secretion is enhanced by thyrotropin and corticotropin, respectively. However, unlike in mammals, the hypothalamic releasing factor for thyrotropin is not thyrotropin-releasing hormone (TRH), but corticotropin-releasing factor (CRF) and the major releasing factor for corticotropin is arginine vasotocin (AVT). Prolactin, the release of which is profoundly enhanced by TRH at the metamorphic climax, is another pituitary hormone involved in metamorphosis. Prolactin has a dual role: modulation of the metamorphic speed and the development of organs for adult life. The secretory activities of the pituitary cells containing the three above-mentioned pituitary hormones are elevated toward the metamorphic climax in parallel with the activities of the CRF, AVT, and TRH neurons.


Subject(s)
Amphibians/growth & development , Hypothalamo-Hypophyseal System/growth & development , Metamorphosis, Biological , Animals , Cell Differentiation , Endocrine System/metabolism , Larva/growth & development
6.
Antibiotics (Basel) ; 9(8)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751229

ABSTRACT

The Sado wrinkled frog Glandirana susurra has recently been classified as a new frog species endemic to Sado Island, Japan. In this study, we cloned 12 cDNAs encoding the biosynthetic precursors for brevinin-2SSa-2SSd, esculentin-2SSa, ranatuerin-2SSa, brevinin-1SSa-1SSd, granuliberin-SSa, and bradykinin-SSa from the skin of G. susurra. Among these antimicrobial peptides, we focused on brevinin-2SSb, ranatuerin-2SSa, and granuliberin-SSa, using their synthetic replicates to examine their activities against different reference strains of pathogenic microorganisms that infect animals and plants. In broth microdilution assays, brevinin-2SSb displayed antimicrobial activities against animal pathogens Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, and Candida albicans and plant pathogens Xanthomonas oryzae pv. oryzae, Clavibacter michiganensis subsp. michiganensis, and Pyricularia oryzae. Ranatuerin-2SSa and granuliberin-SSa were active against C. albicans and C. michiganensis subsp. michiganensis, and granuliberin-SSa also was active against the other plant pathogenic microbes. Scanning electron microscopic observations demonstrated that brevinin-2SSb, ranatuerin-2SSa, and granuliberin-SSa induced morphological abnormalities on the cell surface in a wide range of the reference pathogens. To assess the bacterial-endotoxin-binding ability of the peptides, we developed an enzyme-linked endotoxin-binding assay system and demonstrated that brevinin-2SSb and ranatuerin-2SSa both exhibited high affinity to lipopolysaccharide and moderate affinity to lipoteichoic acid.

7.
Gen Comp Endocrinol ; 284: 113212, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31238076

ABSTRACT

In this review article, information about the development of the hypothalamo-hypophyseal axis, endocrine control of metamorphosis, and hormonal and pheromonal involvements in reproductive behavior in some amphibian species is assembled from the works conducted mainly by our research group. The hypothalamic and pituitary development was studied using Bufo embryos and larvae. The primordium of the epithelial hypophysis originates at the anterior neural ridge and migrates underneath the brain to form a Rathke's pouch-like structure. The hypothalamo-hypophyseal axis develops under the influence of thyroid hormone (TH). For the morphological and functional development of the median eminence, which is a key structure in the transport of regulatory hormones to the pituitary, contact of the adenohypophysis with the undeveloped median eminence is necessary. For the development of proopiomelanocortin-producing cells, contact of the pituitary primordium with the infundibulum is required. The significance of avascularization in terms of the function of the intermediate lobe of the pituitary was evidenced with transgenic Xenopus frogs expressing a vascular endothelial growth factor in melanotropes. Metamorphosis progresses via the interaction of TH, adrenal corticosteroids, and prolactin (PRL). We emphasize that PRL has a dual role: modulation of the speed of metamorphic changes and functional development of organs for adult life. A brief description about a novel type of PRL (1B) that was detected was made. A possible reason why the main hypothalamic factor that stimulates the release of thyrotropin is not thyrotropin-releasing hormone, but corticotropin-releasing factor is considered in light of the fact that amphibians are poikilotherms. As regards the reproductive behavior in amphibians, studies were focused on the courtship behavior of the newt, Cynops pyrrhogaster. Male newts exhibit a unique courtship behavior toward sexually developed conspecific females. Hormonal interactions eliciting this behavior and hormonal control of the courtship pheromone secretion are discussed on the basis of our experimental results.


Subject(s)
Amphibians/physiology , Hypothalamus/growth & development , Pituitary Gland/growth & development , Sexual Behavior, Animal/physiology , Animals , Endocrine System/physiology , Female , Male , Pheromones/metabolism
8.
Gen Comp Endocrinol ; 267: 36-44, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29864416

ABSTRACT

In amphibians, thyrotropin (TSH), corticotropin (ACTH) and prolactin (PRL) are regarded as the major pituitary hormones involved in metamorphosis, their releasing factors being corticotropin-releasing factor (CRF), arginine vasotocin (AVT), and thyrotropin-releasing hormone (TRH), respectively. It is also known that thyrotropes and corticotropes are equipped with CRF type-2 receptor and AVT V1b receptor, respectively. As for PRL cells, information about the type of receptor for TRH (TRHR) through which the action of TRH is mediated to induce the release of PRL is lacking. In order to fill this gap, an attempt was made to characterize the TRHR subtype existing in the PRL cells of the anterior pituitary gland of the bullfrog, Rana catesbeiana. We cloned cDNAs for three types of bullfrog TRHRs, namely TRHR1, TRHR2 and TRHR3, and confirmed that all of them are functional receptors for TRH by means of reporter gene assay. Analyses with semi-quantitative reverse transcription-PCR and in situ hybridization revealed that TRHR3 mRNA is expressed in the anterior lobe and that the signals reside mostly in the PRL cells. It was also noted that the expression levels of TRHR3 mRNA in the anterior pituitary as well as in the PRL cells of metamorphosing tadpoles elevate as metamorphosis progresses. Since the pattern of changes in TRHR3 mRNA levels in the larval pituitary is almost similar to that previously observed in the pituitary PRL mRNA and plasma PRL levels, we provide a view that TRHR3 mediates the action of TRH on the PRL cells to induce the release of PRL that is prerequisite for growth and metamorphosis in amphibians.


Subject(s)
Metamorphosis, Biological/drug effects , Prolactin/metabolism , Receptors, Thyrotropin-Releasing Hormone/genetics , Receptors, Thyrotropin-Releasing Hormone/metabolism , Thyrotropin-Releasing Hormone/metabolism , Animals , Rana catesbeiana
9.
Zoolog Sci ; 34(6): 523-531, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29219046

ABSTRACT

Antimicrobial peptides (AMPs) were previously isolated from the skin of the Ryukyu brown frog Rana okinavana. However, this species has recently been reclassified as two species, i.e., Rana kobai and Rana ulma. As a result, it was determined that AMPs isolated from R. okinavana were in fact products of R. kobai, but not of R. ulma. In the present study, we collected skin samples from the species R. ulma and cloned twelve cDNAs encoding AMP precursors for the acyclic brevinin-1ULa--1ULf, the temporin-ULa-ULc, ranatuerin-2ULa, japonicin-1ULa, and a novel peptide using reverse-transcription polymerase chain reaction techniques. The deduced amino acid sequence of the novel peptide had a high similarity to those of Rana chensinensis chensinin-1CEa--1CEc, which were cloned by Zhao et al. ( 2011 ), but had a low similarity with R. chensinensis chensinin-1, which was cloned by Shang et al. ( 2009 ). To avoid confusion with these two different chensinin-1 families, we termed our peptide ulmin-1. Among these peptides, we focused on two peptides, brevinin-1ULf and ulmin-1ULa, and examined the antimicrobial and cytotoxic activity of their synthetic replicates. In broth microdilution assays, growth inhibitory activities against Staphylococcus aureus, Bacillus cereus, and Candida albicans were detected for brevinin-1ULf but not for ulmin-1ULa, whereas scanning electron microscopic observations revealed that both peptides induce morphological abnormalities in these microbes. In addition, binding activity of ulmin-1ULa to the bacterial cell wall component lipoteichoic acid was higher than that of brevinin-1ULf. In contrast, hemolytic and cytotoxic activities of brevinin-1ULf were stronger than those of ulmin-1ULa.


Subject(s)
Amphibian Proteins/metabolism , Antimicrobial Cationic Peptides/metabolism , Ranidae/genetics , Ranidae/metabolism , Amino Acid Sequence , Amphibian Proteins/genetics , Animals , Antimicrobial Cationic Peptides/genetics , Bacteria/metabolism , Base Sequence , COS Cells , Chlorocebus aethiops , Cloning, Molecular
10.
Sci Rep ; 7: 41334, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28120945

ABSTRACT

The male red-bellied newt (Cynops pyrrhogaster) approaches the female's cloaca prior to performing any courtship behaviour, as if he is using some released substance to gauge whether she is sexually receptive. Therefore, we investigated whether such a female sexual attractiveness pheromone exists. We found that a tripeptide with amino acid sequence Ala-Glu-Phe is secreted by the ciliary cells in the epithelium of the proximal portion of the oviduct of sexually developed newts and confirmed that this is the major active substance in water in which sexually developed female newts have been kept. This substance only attracted sexually developed male newts and acted by stimulating the vomeronasal epithelial cells. This is the first female sexual attractiveness peptide pheromone to be identified in a vertebrate.


Subject(s)
Salamandridae/physiology , Sex Attractants/pharmacology , Animals , Dipeptides/isolation & purification , Dipeptides/pharmacology , Female , Male , Oviducts/cytology , Oviducts/drug effects , Oviducts/ultrastructure , Sex Attractants/isolation & purification , Vomeronasal Organ/cytology
11.
Gen Comp Endocrinol ; 237: 121-130, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27570059

ABSTRACT

In a previous study, we showed that corticotropin-releasing factor (CRF) is the major thyroid-stimulating hormone (TSH)-releasing factor in the bullfrog (Rana catesbeiana) hypothalamus. Our findings prompted us to ascertain whether CRF or arginine vasotocin (AVT), a known adrenocorticotropic hormone (ACTH) secretagogue in several vertebrates, is the main stimulator of the release of ACTH from the bullfrog pituitary. Both the frog CRF and AVT stimulated the release of immunoassayable ACTH from dispersed anterior pituitary cells in vitro in a concentration-dependent manner. AVT, however, exhibited far more potent ACTH-releasing activity than CRF. Although CRF by itself weakly stimulated ACTH release, it acted synergistically with AVT to enhance the release of ACTH markedly. Mesotocin and AVT-related peptides such as hydrin 1 and hydrin 2 showed relatively weak ACTH-releasing activity. Subsequently, cDNAs encoding the bullfrog AVT V1a-type and V1b-type receptors were molecularly cloned. Reverse transcriptase-PCR using specific primers revealed that the anterior lobe of the pituitary predominantly expressed AVT V1b-type receptor mRNA but scarcely expressed AVT V1a-type receptor mRNA. Abundant signals for V1b-type receptor mRNA in the corticotropes were also detected by in situ hybridization. The results obtained by the experiments with the bullfrog pituitary indicate that AVT acts as the main ACTH-releasing factor through the AVT V1b-type receptor and that CRF acts synergistically with AVT to enhance the release of ACTH.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Corticotropin-Releasing Hormone/metabolism , Rana catesbeiana/metabolism , Vasotocin/metabolism , Amino Acid Sequence , Animals , Base Sequence , Fluorescent Antibody Technique , Pituitary Gland, Anterior/drug effects , Pituitary Gland, Anterior/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Vasopressin/chemistry , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism , Time Factors , Vasotocin/analogs & derivatives , Vasotocin/pharmacology
12.
Gen Comp Endocrinol ; 224: 96-103, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26141146

ABSTRACT

Reproductive behavior in amphibians, as in other vertebrate animals, is under the control of multiple hormonal substances. Prolactin (PRL), arginine vasotocin (AVT), androgen, and 7α-hydroxypregnenolone (7α-OH PREG), four such substances with hormonal activity, are known to be involved in the expression of the tail vibration behavior which is the initial step of courtship performed by the male newt, Cynops pyrrhogaster. As current information on the interaction(s) between these hormones in terms of eliciting tail vibration behavior is limited, we have investigated whether the decline of expression of tail vibration behavior due to suppression of the activity of any one of these hormones can be restored by supplying any one of the other three hormones exogenously. Expression of the behavior was determined in terms of incidence (% of test animals exhibiting the behavior) and frequency (number of times that the behavior was repeated during the test period). Neither PRL nor androgen restored the decline in the incidence and frequency of the tail vibration behavior caused by the suppression of the activity of any one of other three hormones. AVT completely restored both the anti-PRL antibody-induced and flutamide (an androgen receptor antagonist)-induced, but not ketoconazole (an inhibitor of the steroidogenic CYP enzymes)-induced decline in the incidence and frequency of the tail vibration behavior. The neurosteroid, 7α-OH PREG, failed to restore flutamide-induced decline in the incidence and frequency of the behavior. However, it was able to restore both anti-PRL antibody-induced and AVT receptor antagonist-induced decline in the incidence, but not in the frequency of the behavior. In another experiment designed to see the activity of hormones enhancing the frequency of the tail vibration behavior, AVT was revealed to be more potent than 7α-OH PREG. The role of each hormonal substance in determining the expression of the tail vibration behavior was discussed based on the results.


Subject(s)
17-alpha-Hydroxypregnenolone/analogs & derivatives , Androgens/pharmacology , Prolactin/pharmacology , Salamandridae/physiology , Sexual Behavior, Animal/drug effects , Tail/drug effects , Vasotocin/pharmacology , Vibration , 17-alpha-Hydroxypregnenolone/pharmacology , Animals , Courtship , Male , Neurotransmitter Agents/pharmacology , Tail/innervation , Vasoconstrictor Agents/pharmacology
13.
J Comp Neurol ; 522(15): 3501-19, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24771457

ABSTRACT

We analyzed the expression of G protein α subunits and the axonal projection into the brain in the olfactory system of the semiaquatic newt Cynops pyrrhogaster by immunostaining with antibodies against Gαolf and Gαo , by in situ hybridization using probes for Gαolf , Gαo , and Gαi2 , and by neuronal tracing with DiI and DiA. The main olfactory epithelium (OE) consists of two parts, the ventral OE and dorsal OE. In the ventral OE, the Gαolf - and Gαo -expressing neurons are located in the apical and basal zone of the OE, respectively. This zonal expression was similar to that of the OE in the middle cavity of the fully aquatic toad Xenopus laevis. However, the Gαolf - and Gαo -expressing neurons in the newt ventral OE project their axons toward the main olfactory bulb (MOB) and the accessory olfactory bulb (AOB), respectively, whereas in Xenopus, the axons of both neurons project solely toward the MOB. In the dorsal OE of the newt, as in the principal cavity of Xenopus, the majority of the neurons express Gαolf and extend their axons into the MOB. In the vomeronasal organ (VNO), the neurons mostly express Gαo . These neurons and quite a few Gαolf -expressing neurons project their axons toward the AOB. This feature is similar to that in the terrestrial toad Bufo japonicus and is different from that in Xenopus, in which VNO neurons express solely Gαo , although their axons invariably project toward the AOB. We discuss the findings in the light of diversification and evolution of the vertebrate olfactory system.


Subject(s)
Amphibian Proteins/metabolism , GTP-Binding Proteins/metabolism , Olfactory Receptor Neurons/cytology , Olfactory Receptor Neurons/metabolism , Salamandra/anatomy & histology , Salamandra/metabolism , Animals , Axons/metabolism , Female , Immunohistochemistry , In Situ Hybridization , Microscopy, Immunoelectron , Nasal Mucosa/innervation , Nasal Mucosa/metabolism , Neural Pathways/anatomy & histology , Neural Pathways/metabolism , Neuroanatomical Tract-Tracing Techniques , Olfactory Bulb/anatomy & histology , Olfactory Bulb/metabolism , Species Specificity
14.
Endocrinology ; 155(5): 1817-26, 2014 May.
Article in English | MEDLINE | ID: mdl-24552400

ABSTRACT

The inhibitory effect of stress on reproductive function is potentially mediated by high concentrations of circulating glucocorticoids (GCs) acting via the GC receptor (GR). Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion. GnIH may mediate stress-induced reproductive dysfunction. However, it is not yet known whether GC-bound GR is directly involved in GnIH transcription. Here, we demonstrated the localization of GR mRNA in GnIH neurons in the paraventricular nucleus of quail, suggesting that GC can directly regulate GnIH transcription. We next showed that 24 hours of treatment with corticosterone (CORT) increase GnIH mRNA expression in the quail diencephalon. We further investigated the mechanism of activation of GnIH transcription by CORT using a GnIH-expressing neuronal cell line, rHypoE-23, derived from rat hypothalamus. We found the expression of GR mRNA in rHypoE-23 cells and increased GnIH mRNA expression by 24 hours of CORT treatment. We finally characterized the promoter activity of rat GnIH gene stimulated by CORT. Through DNA deletion analysis, we identified a CORT-responsive region at 2000-1501 bp upstream of GnIH precursor coding region. This region included 2 GC response elements (GREs) at -1665 and -1530 bp. Mutation of -1530 GRE abolished CORT responsiveness. We also found CORT-stimulated GR recruitment at the GnIH promoter region containing the -1530 GRE. These results provide a putative molecular basis for transcriptional activation of GnIH under stress by demonstrating that CORT directly induces GnIH transcription by recruitment of GR to its promoter.


Subject(s)
Avian Proteins/metabolism , Corticosterone/metabolism , Coturnix/metabolism , Hypothalamic Hormones/metabolism , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Promoter Regions, Genetic , Receptors, Glucocorticoid/metabolism , 5' Flanking Region , Animals , Avian Proteins/genetics , Cell Line , Gene Deletion , Hypothalamic Hormones/genetics , Male , Neurons/cytology , Paraventricular Hypothalamic Nucleus/cytology , Protein Transport , RNA, Messenger/metabolism , Rats , Receptors, Glucocorticoid/genetics , Recombinant Proteins/metabolism , Response Elements , Signal Transduction , Transcription, Genetic , Up-Regulation
15.
Int Rev Cell Mol Biol ; 304: 191-225, 2013.
Article in English | MEDLINE | ID: mdl-23809437

ABSTRACT

This chapter reviews the functions of arginine vasotocin (AVT) and its receptors in the central nervous system (CNS) of primarily submammalian vertebrates. The V1a-type receptor, which is widely distributed in the CNS of birds, amphibians, and fish, is one of the most important receptors involved in the expression of social and reproductive behaviors. In mammals, the V1b receptor of arginine vasopressin, an AVT ortholog, is assumed to be involved in aggression, social memory, and stress responses. The distribution of the V1b-type receptor in the brain of submammalian vertebrates has only been reported in an amphibian species, and its putative functions are discussed in this review. The functions of V2-type receptor in the CNS are still unclear. Recent phylogenetical and pharmacological analyses have revealed that the avian VT1 receptor can be categorized as a V2b-type receptor. The distribution of this newly categorized VT1 receptor in the brain of avian species should contribute to our knowledge of the possible roles of the V2b-type receptor in the CNS of other nonmammalian vertebrates. The functions of AVT in the amphibian and avian pituitaries are also discussed, focusing on the V1b- and V1a-type receptors.


Subject(s)
Pituitary Gland/metabolism , Receptors, Vasopressin/metabolism , Vertebrates/metabolism , Amino Acid Sequence , Animals , Arginine Vasopressin/metabolism , Molecular Sequence Data , Pituitary Gland/cytology , Receptors, Vasopressin/chemistry
16.
Zoolog Sci ; 30(3): 185-91, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23480378

ABSTRACT

The Harderian gland (HG) is an orbital gland found in many terrestrial vertebrates that possess a nictitating membrane. Using reverse-transcription polymerase chain reaction (RT-PCR), we cloned five cDNAs encoding antimicrobial peptide (AMP)-homologs, catesbeianalectin, ranacyclin-CBa, ranatuerin-1CBa, ranatuerin-2CBa, and ranatuerin-2CBb, from the bullfrog HG total RNA. Of these, catesbeianalectin has not been thoroughly studied in terms of its biological activities. We examined antimicrobial activities of the synthetic replicate of catesbeianalectin and its putative unprocessed precursor, catesbeianalectin-GK. Both peptides showed slight but significant growth inhibitory activity against the Gram-negative bacterium Escherichia coli. Subsequently, we tested catesbeianalectin and catesbeianalectin-GK for mast cell degranulation activity as a criterion of the release of N-acetyl-ß-D-glucosaminidase from the mouse-derived mastocytoma cell line P-815, followed by the standard MTT assay to assess cell survival and recovery after peptide treatment. We found that catesbeianalectin and catesbeianalectin-GK invariably exhibited mast cell degranulation activity without cytotoxic effects. Hemagglutination assay revealed the presence of lectin-like activity in both catesbeianalectin and catesbeianalectin-GK. Our findings strongly suggest that these multifunctional host defense peptides in the amphibian HG are involved in innate immunodefense of the eye of the host against pathogenic environmental microorganisms.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Gene Expression Regulation/physiology , Harderian Gland/physiology , Lectins/metabolism , Rana catesbeiana/physiology , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/genetics , Base Sequence , Cell Line , Cell Survival , Cloning, Molecular , Mice , Molecular Sequence Annotation
17.
Zoolog Sci ; 30(4): 311-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23537242

ABSTRACT

Three forms of gonadotropin-releasing hormone (GnRH) are found in vertebrates; these differ in amino acid sequence, localization, distribution, and embryological origin. We used northern blot analysis, and in situ hybridization to detect GnRH transcripts in various tissues in the large ascidian Halocynthia roretzi. We cloned a cDNA encoding two novel GnRHs, termed tGnRH-10 and tGnRH-11, from H. roretzi, with deduced amino acid sequences of QHWSYGFSPG and QHWSYGFLPG, respectively. Both GnRHs are highly similar to those of teleosts and tetrapods. For example, the tGnRH-10 sequence is 90% identical to seabream GnRH1, and tGnRH-11 is 90% identical to salmon GnRH3. The primary structure of the deduced preprotein is similar to that of chordate GnRHs and consists of a signal peptide, two decapeptides, up- and downstream processing sequences (containing lysine and arginine), and a GnRH-associated peptide. The transcripts of the H. roretzi GnRH gene were expressed in all tissues examined. Comparison of the signal peptide of the lamprey GnRH-II precursor with those of three forms from representative vertebrates revealed homology to GnRH2 precursors. These novel ascidian GnRHs offer a new perspective on the origin of vertebrate GnRH subtypes. We hypothesize that gnathostome GnRH2 was derived only from lamprey GnRH-II and that ancestral gnathostome GnRH, which produces neurons that originate in peripheral organs, gave rise to vertebrate GnRH1 and GnRH3 through whole-genome duplication.


Subject(s)
Gonadotropin-Releasing Hormone/classification , Gonadotropin-Releasing Hormone/metabolism , Urochordata/metabolism , Vertebrates/physiology , Amino Acid Sequence , Animals , Base Sequence , Evolution, Molecular , Molecular Sequence Data , Phylogeny , Protein Isoforms
18.
Horm Behav ; 62(4): 375-80, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22796546

ABSTRACT

Reproductive behavior in amphibians, as in other vertebrate animals, is controlled by multiple hormones. A neurosteroid, 7α-hydroxypregnenolone, has recently been found to enhance locomotor activity in the male newt, Cynops pyrrhogaster. Here, we show that this neurosteroid is also involved in enhancing the expression of courtship behavior. Intracerebroventricular (ICV) injection of 7α-hydroxypregnenolone enhanced courtship behavior dose-dependently in the sexually undeveloped males that had been pretreated with prolactin and gonadotropin, which is known to bring the males to a sexually developed state. But, unlike the case in the locomotion activity, 7α-hydroxypregnenolone did not elicit the behavior in males receiving no prior injections of these hormones. ICV administration of ketoconazole, an inhibitor of the steroidogenic enzyme cytochrome P450s, suppressed the spontaneously occurring courtship behavior in sexually active males. Supplementation with 7α-hydroxypregnenolone reversed the effect of ketoconazole in these animals. It was also demonstrated that the effect of the neurosteroid on the courtship behavior was blocked by a dopamine D2-like, but not by a D1-like, receptor antagonist. These results indicate that endogenous 7α-hydroxypregnenolone enhances the expression of the male courtship behavior through a dopaminergic system mediated by a D2-like receptor in the brain.


Subject(s)
17-alpha-Hydroxypregnenolone/analogs & derivatives , Courtship , Salamandridae/physiology , Sexual Behavior, Animal/drug effects , 14-alpha Demethylase Inhibitors/pharmacology , 17-alpha-Hydroxypregnenolone/pharmacology , Animals , Benzazepines/pharmacology , Dopamine Antagonists/pharmacology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/physiology , Dose-Response Relationship, Drug , Female , Ketoconazole/pharmacology , Male , Neurotransmitter Agents/pharmacology , Neurotransmitter Agents/physiology
19.
Endocrinology ; 153(2): 794-805, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22128027

ABSTRACT

7α-Hydroxypregnenolone (7α-OH PREG) is a newly identified bioactive neurosteroid stimulating locomotor activity in the brain of newt, a wild animal, which serves as an excellent model to investigate the biosynthesis and biological action of neurosteroids. Here, we show that acute stress increases 7α-OH PREG synthesis in the dorsomedial hypothalamus (DMH) through corticosterone (CORT) action in newts. A 30-min restraint stress increased 7α-OH PREG synthesis in the brain tissue concomitant with the increase in plasma CORT concentrations. A 30-min restraint stress also increased the expression of cytochrome P450(7α) (CYP7B), the steroidogenic enzyme of 7α-OH PREG formation, in the DMH. Decreasing plasma CORT concentrations by hypophysectomy or trilostane administration decreased 7α-OH PREG synthesis in the diencephalon, whereas administration of CORT to these animals increased 7α-OH PREG synthesis. Glucocorticoid receptor was present in DMH neurons expressing CYP7B. Thus, CORT appears to act directly on DMH neurons to increase 7α-OH PREG synthesis. We further investigated the biological action of 7α-OH PREG in the brain under stress. A 30-min restraint stress or central administration of 7α-OH PREG increased serotonin concentrations in the diencephalon. Double immunolabeling further showed colocalization of CYP7B and serotonin in the DMH. These results indicate that acute stress increases the synthesis of 7α-OH PREG via CORT action in the DMH, and 7α-OH PREG activates serotonergic neurons in the DMH that may coordinate behavioral responses to stress. This is the first demonstration of neurosteroid biosynthesis regulated by peripheral steroid hormone and of neurosteroid action in the brain under stress in any vertebrate class.


Subject(s)
17-alpha-Hydroxypregnenolone/analogs & derivatives , Corticosterone/metabolism , Motor Activity/physiology , Salamandridae/physiology , Stress, Physiological/physiology , 17-alpha-Hydroxypregnenolone/metabolism , Amino Acid Sequence , Animals , Base Sequence , Brain/drug effects , Brain/metabolism , Cytochrome P-450 Enzyme System/metabolism , Male , Models, Animal , Molecular Sequence Data , Neurons/metabolism , Receptors, Glucocorticoid/metabolism , Serotonin/metabolism
20.
Gen Comp Endocrinol ; 170(3): 468-74, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21050853

ABSTRACT

It is becoming clear that the vertebrate brain has the capability of forming steroids de novo, the so-called "neurosteroids". To understand neurosteroidogenesis in the brain, it is essential to demonstrate the formation of pregnenolone, a main precursor of neurosteroids. In amphibians, the pregnenolone formation from cholesterol is still unclear, although the brain accumulates pregnenolone, pregnenolone sulfate and 7α-hydroxypregnenolone. This study was addressed to obtain basic information about pregnenolone formation in the newt brain. Firstly, we demonstrated that the newt brain produces pregnenolone from cholesterol. Subsequently, cDNA encoding cytochrome P450 side-chain cleavage enzyme (P450scc), a key steroidogenic enzyme catalyzing pregnenolone formation, was isolated from the newt. The sequence analysis showed that the isolated P450scc cDNA contained a putative coding region consisting of 1569 bp, which encoded 523 amino acids. The steroid- and heme-binding domains of P450scc were highly shared in amino acids among vertebrates. RT-PCR analysis amplified the authentic fragment corresponding to newt P450scc showed its transcription in the brain. However, the transcription level in the brain was lower than those of the gonad and the kidney including adrenals. The restricted cells in the four major regions of the newt brain, such as the telencephalon, diencephalon, mesencephalon, and rhombencephalon, were demonstrated to express P450scc transcripts by RT-PCR and in situ hybridization. Taken together, these results indicate that the newt brain expresses P450scc mRNA and produces pregnenolone from cholesterol.


Subject(s)
Brain/metabolism , Cholesterol Side-Chain Cleavage Enzyme/biosynthesis , Salamandridae/metabolism , Amino Acid Sequence , Animals , Cholesterol/metabolism , Female , Male , Molecular Sequence Data , Pregnenolone/biosynthesis , RNA, Messenger/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...