Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Plant Direct ; 7(8): e515, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37547488

ABSTRACT

Intrinsically disordered protein regions (IDRs) are highly dynamic sequences that rapidly sample a collection of conformations over time. In the past several decades, IDRs have emerged as a major component of many proteomes, comprising ~30% of all eukaryotic protein sequences. Proteins with IDRs function in a wide range of biological pathways and are notably enriched in signaling cascades that respond to environmental stresses. Here, we identify and characterize intrinsic disorder in the soluble cytoplasmic N-terminal domains of MSL8, MSL9, and MSL10, three members of the MscS-like (MSL) family of mechanosensitive ion channels. In plants, MSL channels are proposed to mediate cell and organelle osmotic homeostasis. Bioinformatic tools unanimously predicted that the cytosolic N-termini of MSL channels are intrinsically disordered. We examined the N-terminus of MSL10 (MSL10N) as an exemplar of these IDRs and circular dichroism spectroscopy confirms its disorder. MSL10N adopted a predominately helical structure when exposed to the helix-inducing compound trifluoroethanol (TFE). Furthermore, in the presence of molecular crowding agents, MSL10N underwent structural changes and exhibited alterations to its homotypic interaction favorability. Lastly, interrogations of collective behavior via in vitro imaging of condensates indicated that MSL8N, MSL9N, and MSL10N have sharply differing propensities for self-assembly into condensates, both inherently and in response to salt, temperature, and molecular crowding. Taken together, these data establish the N-termini of MSL channels as intrinsically disordered regions with distinct biophysical properties and the potential to respond uniquely to changes in their physiochemical environment.

2.
J Gen Physiol ; 155(3)2023 03 06.
Article in English | MEDLINE | ID: mdl-36696153

ABSTRACT

This Viewpoint, which accompanies a Special Issue focusing on membrane mechanosensors, discusses unifying and unique features of both established and emerging mechanosensitive (MS) membrane proteins, their distribution across protein families and phyla, and current and future challenges in the study of these important proteins and their partners. MS membrane proteins are essential for tissue development, cellular motion, osmotic homeostasis, and sensing external and self-generated mechanical cues like those responsible for touch and proprioception. Though researchers' attention and this Viewpoint focus on a few famous ion channels that are considered the usual suspects as MS mechanosensors, we also discuss some of the more unusual suspects, such as G-protein coupled receptors. As the field continues to grow, so too will the list of proteins suspected to function as mechanosensors and the diversity of known MS membrane proteins.


Subject(s)
Ion Channels , Membrane Proteins , Ion Channels/metabolism , Membrane Proteins/metabolism , Mechanotransduction, Cellular/physiology
3.
J Exp Bot ; 74(1): 1-6, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36563102

ABSTRACT

In the summer of 2021, we held a community workshop at the International Congress of Arabidopsis Research (ICAR) aimed at early career researchers and focused on values-based lab leadership. Here, we elaborate on ideas emerging from the workshop that we hope will allow current and future group leaders to reflect on and adjust to the rapidly evolving nature of the academic scientific enterprise.


Subject(s)
Leadership , Capacity Building , Mentors , Research/trends
4.
Elife ; 112022 Oct 07.
Article in English | MEDLINE | ID: mdl-36205399

ABSTRACT

Mechanosensitive (MS) ion channels are an evolutionarily conserved way for cells to sense mechanical forces and transduce them into ionic signals. The channel properties of Arabidopsis thaliana MscS-Like (MSL)10 have been well studied, but how MSL10 signals remains largely unknown. To uncover signaling partners of MSL10, we employed a proteomic screen and a forward genetic screen; both unexpectedly implicated endoplasmic reticulum-plasma membrane contact sites (EPCSs) in MSL10 function. The proteomic screen revealed that MSL10 associates with multiple proteins associated with EPCSs. Of these, only VAMP-associated proteins (VAP)27-1 and VAP27-3 interacted directly with MSL10. The forward genetic screen, for suppressors of a gain-of-function MSL10 allele (msl10-3G, MSL10S640L), identified mutations in the synaptotagmin (SYT)5 and SYT7 genes. We also found that EPCSs were expanded in leaves of msl10-3G plants compared to the wild type. Taken together, these results indicate that MSL10 associates and functions with EPCS proteins, providing a new cell-level framework for understanding MSL10 signaling. In addition, placing a mechanosensory protein at EPCSs provides new insight into the function and regulation of this type of subcellular compartment.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Proteomics , Ion Channels/metabolism , Cell Membrane/metabolism , Membrane Proteins/metabolism
5.
Biophys J ; 121(20): 3917-3926, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36045574

ABSTRACT

Acoustic transduction by plants has been proposed as a mechanism to enable just-in-time up-regulation of metabolically expensive defensive compounds. Although the mechanisms by which this "hearing" occurs are unknown, mechanosensation by elongated plant hair cells known as trichomes is suspected. To evaluate this possibility, we developed a theoretical model to evaluate the acoustic radiation force that an elongated cylinder can receive in response to sounds emitted by animals, including insect herbivores, and applied it to the long, cylindrical stem trichomes of the tomato plant Solanum lycopersicum. Based on perturbation theory and validated by finite element simulations, the model quantifies the effects of viscosity and frequency on this acoustic radiation force. Results suggest that acoustic emissions from certain animals, including insect herbivores, may produce acoustic radiation force sufficient to trigger stretch-activated ion channels.


Subject(s)
Solanum lycopersicum , Animals , Solanum lycopersicum/physiology , Trichomes , Acoustics
6.
Proc Natl Acad Sci U S A ; 119(30): e2206433119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858457

ABSTRACT

Some of the most spectacular examples of botanical carnivory-in which predator plants catch and digest animals presumably to supplement the nutrient-poor soils in which they grow-occur within the Droseraceae family. For example, sundews of the genus Drosera have evolved leaf movements and enzyme secretion to facilitate prey digestion. The molecular underpinnings of this behavior remain largely unknown; however, evidence suggests that prey-induced electrical impulses are correlated with movement and production of the defense hormone jasmonic acid (JA), which may alter gene expression. In noncarnivorous plants, JA is linked to electrical activity via changes in cytoplasmic Ca2+. Here, we find that dynamic Ca2+ changes also occur in sundew (Drosera spatulata) leaves responding to prey-associated mechanical and chemical stimuli. Furthermore, inhibition of these Ca2+ changes reduced expression of JA target genes and leaf movements following chemical feeding. Our results are consistent with the presence of a conserved Ca2+-dependent JA signaling pathway in the sundew feeding response and provide further credence to the defensive origin of plant carnivory.


Subject(s)
Calcium Signaling , Calcium , Carnivorous Plant , Drosera , Animals , Calcium/metabolism , Carnivorous Plant/metabolism , Cyclopentanes/metabolism , Drosera/metabolism , Oxylipins/metabolism , Plant Leaves/metabolism
7.
Curr Biol ; 32(13): 2921-2934.e3, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35660140

ABSTRACT

Pollen, a neighbor-less cell containing the male gametes, undergoes mechanical challenges during plant sexual reproduction, including desiccation and rehydration. It was previously shown that the pollen-specific mechanosensitive ion channel MscS-like (MSL)8 is essential for pollen survival during hydration and proposed that it functions as a tension-gated osmoregulator. Here, we test this hypothesis with a combination of mathematical modeling and laboratory experiments. Time-lapse imaging revealed that wild-type pollen grains swell, and then they stabilize in volume rapidly during hydration. msl8 mutant pollen grains, however, continue to expand and eventually burst. We found that a mathematical model, wherein MSL8 acts as a simple-tension-gated osmoregulator, does not replicate this behavior. A better fit was obtained from variations of the model, wherein MSL8 inactivates independent of its membrane tension gating threshold or MSL8 strengthens the cell wall without osmotic regulation. Experimental and computational testing of several perturbations, including hydration in an osmolyte-rich solution, hyper-desiccation of the grains, and MSL8-YFP overexpression, indicated that the cell wall strengthening model best simulated experimental responses. Finally, the expression of a nonconducting MSL8 variant did not complement the msl8 overexpansion phenotype. These data indicate that contrary to our hypothesis and to the current understanding of MS ion channel function in bacteria, MSL8 does not act as a simple membrane tension-gated osmoregulator. Instead, they support a model wherein ion flux through MSL8 is required to alter pollen cell wall properties. These results demonstrate the utility of pollen as a cellular scale model system and illustrate how mathematical models can correct intuitive hypotheses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Ion Channels/metabolism , Pollen/metabolism , Pollination
8.
Biomolecules ; 12(6)2022 06 04.
Article in English | MEDLINE | ID: mdl-35740912

ABSTRACT

Interactions between physical forces and membrane proteins underpin many forms of environmental sensation and acclimation. Microbes survive osmotic stresses with the help of mechanically gated ion channels and osmolyte transporters. Plant mechanosensitive ion channels have been shown to function in defense signaling. Here, we engineered genetically encoded osmolality sensors (OzTracs) by fusing fluorescent protein spectral variants to the mechanosensitive ion channels MscL from E. coli or MSL10 from A. thaliana. When expressed in yeast cells, the OzTrac sensors reported osmolality changes as a proportional change in the emission ratio of the two fluorescent protein domains. Live-cell imaging revealed an accumulation of fluorescent sensors in internal aggregates, presumably derived from the endomembrane system. Thus, OzTrac sensors serve as osmolality-dependent reporters through an indirect mechanism, such as effects on molecular crowding or fluorophore solvation.


Subject(s)
Arabidopsis Proteins , Escherichia coli Proteins , Ion Channels , Membrane Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Osmolar Concentration , Osmotic Pressure
9.
Curr Opin Plant Biol ; 65: 102112, 2022 02.
Article in English | MEDLINE | ID: mdl-34628340

ABSTRACT

Mechanical forces were arguably among the first stimuli to be perceived by cells, and they continue to shape the evolution of all organisms. Great strides have been made in recent years in the field of plant cell and molecular mechanobiology, in part owing to focused efforts on key model systems. Here, we propose to enrich such work through evolutionary mechanobiology, or 'evo-mechano', and describe three major themes that could drive research in this area. We use plastid evo-mechano as a case study, describing how plastids from different lineages perceive their mechanical environments, how their mechanical properties vary across lineages, and their distinct roles in graviperception. Finally, we argue that future research into the biomechanical properties and mechanobiological signaling mechanisms that have been elaborated by green species over the past 1.5 billion years will help us understand both the universal and the unique adaptations of plants to their physical environment.


Subject(s)
Plants , Plastids , Biophysics , Models, Biological , Plant Cells , Plants/genetics
10.
Plant Cell ; 34(1): 129-145, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34524447

ABSTRACT

The ability to sense and respond to physical forces is critical for the proper function of cells, tissues, and organisms across the evolutionary tree. Plants sense gravity, osmotic conditions, pathogen invasion, wind, and the presence of barriers in the soil, and dynamically integrate internal and external stimuli during every stage of growth and development. While the field of plant mechanobiology is growing, much is still poorly understood-including the interplay between mechanical and biochemical information at the single-cell level. In this review, we provide an overview of the mechanical properties of three main components of the plant cell and the mechanoperceptive pathways that link them, with an emphasis on areas of complexity and interaction. We discuss the concept of mechanical homeostasis, or "mechanostasis," and examine the ways in which cellular structures and pathways serve to maintain it. We argue that viewing mechanics and mechanotransduction as emergent properties of the plant cell can be a useful conceptual framework for synthesizing current knowledge and driving future research.


Subject(s)
Homeostasis , Mechanotransduction, Cellular , Plant Cells/physiology , Plant Physiological Phenomena , Biomechanical Phenomena , Biophysics
11.
Mol Plant Microbe Interact ; 35(7): 567-582, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34775835

ABSTRACT

Plants sense and respond to molecular signals associated with the presence of pathogens and their virulence factors. Mechanical signals generated during pathogenic invasion may also be important, but their contributions have rarely been studied. Here, we investigate the potential role of a mechanosensitive ion channel, MscS-like (MSL)10, in defense against the bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. We previously showed that overexpression of MSL10-GFP, phospho-mimetic versions of MSL10, and the gain-of-function allele msl10-3G all produce dwarfing, spontaneous cell death, and the hyperaccumulation of reactive oxygen species. These phenotypes are shared by many autoimmune mutants and are frequently suppressed by growth at high temperature in those lines. We found that the same was true for all three MSL10 hypermorphs. In addition, we show that the SGT1/RAR1/HSP90 cochaperone complex was required for dwarfing and ectopic cell death, PAD4 and SID2 were partially required, and the immune regulators EDS1 and NDR1 were dispensable. All MSL10 hypermorphs exhibited reduced susceptibility to infection by P. syringae strain Pto DC3000 and Pto DC3000 expressing the avirulence genes avrRpt2 or avrRpm1 but not Pto DC3000 hrpL and showed an accelerated induction of PR1 expression compared with wild-type plants. Null msl10-1 mutants were delayed in PR1 induction and displayed modest susceptibility to infection by coronatine-deficient P. syringae pv. tomato. Finally, stomatal closure was reduced in msl10-1 loss-of-function mutants in response to P. syringae pv. tomato COR-. These data show that MSL10 modulates pathogen responses and begin to address the possibility that mechanical signals are exploited by the plant for pathogen perception.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Glucosyltransferases/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Solanum lycopersicum/microbiology , Membrane Proteins/metabolism , Plant Diseases/microbiology , Pseudomonas syringae/physiology
12.
Plant Signal Behav ; 17(1): 2015893, 2022 12 31.
Article in English | MEDLINE | ID: mdl-34951344

ABSTRACT

The PIEZO protein family was first described in animals where these mechanosensitive calcium channels perform numerous essential functions, including the perception of light touch, shear, and compressive forces. PIEZO homologs are present in most eukaryotic lineages and recently we reported that two PIEZO homologs from moss Physcomitrium patens localize to the vacuolar membrane and modulate its morphology in tip-growing caulonemal cells. Here we show that predicted structures of both PpPIEZO1 and PpPIEZO2 are very similar to that of mouse Piezo2. Furthermore, we show that both moss PIEZO genes are ubiquitously expressed in moss vegetative tissues and that they are not required for normal vacuolar pH or intracellular osmotic potential. These results suggest that moss PIEZO proteins are widely expressed mechanosensory calcium channels that serve a signaling rather than maintenance role in vacuoles.


Subject(s)
Bryopsida , Vacuoles , Animals , Bryopsida/genetics , Bryopsida/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Mechanotransduction, Cellular , Mice , Signal Transduction , Vacuoles/metabolism
13.
J Exp Bot ; 73(5): 1533-1545, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34849746

ABSTRACT

Cells employ multiple systems to maintain cellular integrity, including mechanosensitive ion channels and the cell wall integrity (CWI) pathway. Here, we use pollen as a model system to ask how these different mechanisms are interconnected at the cellular level. MscS-Like 8 (MSL8) is a mechanosensitive channel required to protect Arabidopsis thaliana pollen from osmotic challenges during in vitro rehydration, germination, and tube growth. New CRISPR/Cas9 and artificial miRNA-generated msl8 alleles produced unexpected pollen phenotypes, including the ability to germinate a tube after bursting, dramatic defects in cell wall structure, and disorganized callose deposition at the germination site. We document complex genetic interactions between MSL8 and two previously established components of the CWI pathway, MARIS and ANXUR1/2. Overexpression of MARISR240C-FP suppressed the bursting, germination, and callose deposition phenotypes of msl8 mutant pollen. Null msl8 alleles suppressed the internalized callose structures observed in MARISR240C-FP lines. Similarly, MSL8-YFP overexpression suppressed bursting in the anxur1/2 mutant background, while anxur1/2 alleles reduced the strong rings of callose around ungerminated pollen grains in MSL8-YFP overexpressors. These data show that mechanosensitive ion channels modulate callose deposition in pollen and provide evidence that cell wall and membrane surveillance systems coordinate in a complex manner to maintain cell integrity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Germination , Pollen/metabolism , Pollen Tube
14.
Sci Adv ; 7(37): eabg4298, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516872

ABSTRACT

Glutamate has dual roles in metabolism and signaling; thus, signaling functions must be isolatable and distinct from metabolic fluctuations, as seen in low-glutamate domains at synapses. In plants, wounding triggers electrical and calcium (Ca2+) signaling, which involve homologs of mammalian glutamate receptors. The hydraulic dispersal and squeeze-cell hypotheses implicate pressure as a key component of systemic signaling. Here, we identify the stretch-activated anion channel MSL10 as necessary for proper wound-induced electrical and Ca2+ signaling. Wound gene induction, genetics, and Ca2+ imaging indicate that MSL10 acts in the same pathway as the glutamate receptor­like proteins (GLRs). Analogous to mammalian NMDA glutamate receptors, GLRs may serve as coincidence detectors gated by the combined requirement for ligand binding and membrane depolarization, here mediated by stretch activation of MSL10. This study provides a molecular genetic basis for a role of mechanical signal perception and the transmission of long-distance electrical and Ca2+ signals in plants.

15.
Science ; 373(6554): 586-590, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34326243

ABSTRACT

In animals, PIEZOs are plasma membrane-localized cation channels involved in diverse mechanosensory processes. We investigated PIEZO function in tip-growing cells in the moss Physcomitrium patens and the flowering plant Arabidopsis thaliana PpPIEZO1 and PpPIEZO2 redundantly contribute to the normal growth, size, and cytoplasmic calcium oscillations of caulonemal cells. Both PpPIEZO1 and PpPIEZO2 localized to vacuolar membranes. Loss-of-function, gain-of-function, and overexpression mutants revealed that moss PIEZO homologs promote increased complexity of vacuolar membranes through tubulation, internalization, and/or fission. Arabidopsis PIEZO1 also localized to the tonoplast and is required for vacuole tubulation in the tips of pollen tubes. We propose that in plant cells the tonoplast has more freedom of movement than the plasma membrane, making it a more effective location for mechanosensory proteins.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Bryopsida/metabolism , Ion Channels/metabolism , Plant Proteins/metabolism , Vacuoles/ultrastructure , Arabidopsis/growth & development , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Bryopsida/growth & development , Bryopsida/ultrastructure , Calcium/metabolism , Calcium Signaling , Cytoplasm/metabolism , Intracellular Membranes/metabolism , Ion Channels/genetics , Plant Proteins/genetics , Pollen Tube/growth & development , Pollen Tube/metabolism , Pollen Tube/ultrastructure , Vacuoles/metabolism
16.
Plant Direct ; 5(4): e00316, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33870032

ABSTRACT

Population growth and climate change will impact food security and potentially exacerbate the environmental toll that agriculture has taken on our planet. These existential concerns demand that a passionate, interdisciplinary, and diverse community of plant science professionals is trained during the 21st century. Furthermore, societal trends that question the importance of science and expert knowledge highlight the need to better communicate the value of rigorous fundamental scientific exploration. Engaging students and the general public in the wonder of plants, and science in general, requires renewed efforts that take advantage of advances in technology and new models of funding and knowledge dissemination. In November 2018, funded by the National Science Foundation through the Arabidopsis Research and Training for the 21st century (ART 21) research coordination network, a symposium and workshop were held that included a diverse panel of students, scientists, educators, and administrators from across the US. The purpose of the workshop was to re-envision how outreach programs are funded, evaluated, acknowledged, and shared within the plant science community. One key objective was to generate a roadmap for future efforts. We hope that this document will serve as such, by providing a comprehensive resource for students and young faculty interested in developing effective outreach programs. We also anticipate that this document will guide the formation of community partnerships to scale up currently successful outreach programs, and lead to the design of future programs that effectively engage with a more diverse student body and citizenry.

17.
Cell Syst ; 12(1): 1-4, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33476552

ABSTRACT

We asked group leaders how they foster mutually reinforcing research productivity and psychological safety in their teams.


Subject(s)
Leadership , Biomedical Research , Set, Psychology
18.
Methods Cell Biol ; 160: 61-82, 2020.
Article in English | MEDLINE | ID: mdl-32896333

ABSTRACT

Plants possess numerous ion channels that respond to a range of stimuli, including small molecules, transmembrane voltage, and mechanical force. Many in the latter category, known as mechanosensitive (MS) ion channels, open directly in response to increases in lateral membrane tension. One of the most effective techniques for characterizing ion channel properties is patch-clamp electrophysiology, in which the current through a section of membrane containing ion channels is measured. For MS channels, this technique enables the measurement of key channel properties such as tension sensitivity, conductance, and ion selectivity. These characteristics, along with the phenotypes of genetic mutants, can help reveal the physiological roles of a particular MS channel. In this protocol, we provide detailed instructions on how to study MS ion channels using single-channel patch-clamp electrophysiology in giant E. coli spheroplasts. We first present an optimized method for preparing giant spheroplasts, then describe how to measure MS channel activity using patch-clamp electrophysiology and analyze the resulting data. We also provide recommended equipment lists, setup schematics, and useful conventions.


Subject(s)
Electrophysiological Phenomena , Escherichia coli/metabolism , Ion Channels/metabolism , Mechanotransduction, Cellular , Patch-Clamp Techniques/methods , Plants/metabolism , Spheroplasts/metabolism , Animals , Chickens
19.
Channels (Austin) ; 14(1): 310-325, 2020 12.
Article in English | MEDLINE | ID: mdl-32988273

ABSTRACT

Mechanosensitive (MS) ion channels are widespread mechanisms for cellular mechanosensation that can be directly activated by increasing membrane tension. The well-studied MscS family of MS ion channels is found in bacteria, archaea, and plants. MscS-Like (MSL)1 is localized to the inner mitochondrial membrane of Arabidopsis thaliana, where it is required for normal mitochondrial responses to oxidative stress. Like Escherichia coli MscS, MSL1 has a pore-lining helix that is kinked. However, in MSL1 this kink is comprised of two charged pore-lining residues, R326 and D327. Using single-channel patch-clamp electrophysiology in E. coli, we show that altering the size and charge of R326 and D327 leads to dramatic changes in channel kinetics. Modest changes in gating pressure were also observed while no effects on channel rectification or conductance were detected. MSL1 channel variants had differing physiological function in E. coli hypoosmotic shock assays, without clear correlation between function and particular channel characteristics. Taken together, these results demonstrate that altering pore-lining residue charge and size disrupts normal channel state stability and gating transitions, and led us to propose the "sweet spot" model. In this model, the transition to the closed state is facilitated by attraction between R326 and D327 and repulsion between R326 residues of neighboring monomers. In the open state, expansion of the channel reduces inter-monomeric repulsion, rendering open state stability influenced mainly by attractive forces. This work provides insight into how unique charge-charge interactions can be combined with an otherwise conserved structural feature to help modulate MS channel function.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Ion Channels/chemistry , Ion Channels/metabolism , Mechanical Phenomena , Amino Acid Sequence , Arabidopsis Proteins/genetics , Biomechanical Phenomena , Escherichia coli/cytology , Escherichia coli/genetics , Ion Channel Gating , Ion Channels/genetics , Kinetics , Models, Molecular , Mutation , Porosity , Protein Conformation, alpha-Helical , Protein Transport
20.
Nat Commun ; 11(1): 3690, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32704140

ABSTRACT

Mechanosensitive ion channels transduce physical force into electrochemical signaling that underlies an array of fundamental physiological processes, including hearing, touch, proprioception, osmoregulation, and morphogenesis. The mechanosensitive channels of small conductance (MscS) constitute a remarkably diverse superfamily of channels critical for management of osmotic pressure. Here, we present cryo-electron microscopy structures of a MscS homolog from Arabidopsis thaliana, MSL1, presumably in both the closed and open states. The heptameric MSL1 channel contains an unusual bowl-shaped transmembrane region, which is reminiscent of the evolutionarily and architecturally unrelated mechanosensitive Piezo channels. Upon channel opening, the curved transmembrane domain of MSL1 flattens and expands. Our structures, in combination with functional analyses, delineate a structural mechanism by which mechanosensitive channels open under increased membrane tension. Further, the shared structural feature between unrelated channels suggests the possibility of a unified mechanical gating mechanism stemming from membrane deformation induced by a non-planar transmembrane domain.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Eukaryota/metabolism , Ion Channel Gating , Ion Channels/chemistry , Ion Channels/metabolism , Mechanotransduction, Cellular , Arabidopsis Proteins/ultrastructure , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Ion Channels/ultrastructure , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Domains , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...