Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 2833, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35595757

ABSTRACT

The CRISPR-Cas type V-I is a family of Cas12i-containing programmable nuclease systems guided by a short crRNA without requirement for a tracrRNA. Here we present an engineered Type V-I CRISPR system (Cas12i), ABR-001, which utilizes a tracr-less guide RNA. The compact Cas12i effector is capable of self-processing pre-crRNA and cleaving dsDNA targets, which facilitates versatile delivery options and multiplexing, respectively. We apply an unbiased mutational scanning approach to enhance initially low editing activity of Cas12i2. The engineered variant, ABR-001, exhibits broad genome editing capability in human cell lines, primary T cells, and CD34+ hematopoietic stem and progenitor cells, with both robust efficiency and high specificity. In addition, ABR-001 achieves a high level of genome editing when delivered via AAV vector to HEK293T cells. This work establishes ABR-001 as a versatile, specific, and high-performance platform for ex vivo and in vivo gene therapy.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Endonucleases/genetics , Endonucleases/metabolism , Gene Editing/methods , HEK293 Cells , Humans , RNA/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
2.
PLoS One ; 16(11): e0252848, 2021.
Article in English | MEDLINE | ID: mdl-34731163

ABSTRACT

Although many long non-coding RNAs (lncRNAs) exhibit lineage-specific expression, the vast majority remain functionally uncharacterized in the context of development. Here, we report the first described human embryonic stem cell (hESC) lines to repress (CRISPRi) or activate (CRISPRa) transcription during differentiation into all three germ layers, facilitating the modulation of lncRNA expression during early development. We performed an unbiased, genome-wide CRISPRi screen targeting thousands of lncRNA loci expressed during endoderm differentiation. While dozens of lncRNA loci were required for proper differentiation, most differentially expressed lncRNAs were not, supporting the necessity for functional screening instead of relying solely on gene expression analyses. In parallel, we developed a clustering approach to infer mechanisms of action of lncRNA hits based on a variety of genomic features. We subsequently identified and validated FOXD3-AS1 as a functional lncRNA essential for pluripotency and differentiation. Taken together, the cell lines and methodology described herein can be adapted to discover and characterize novel regulators of differentiation into any lineage.


Subject(s)
Cell Differentiation/genetics , CRISPR-Cas Systems , Forkhead Transcription Factors/genetics , Humans , RNA Interference , RNA, Long Noncoding
3.
Hum Mol Genet ; 30(23): 2263-2271, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34240140

ABSTRACT

SWitch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes are key epigenetic regulators that are recurrently mutated in cancer. Most studies of these complexes are focused on their role in regulating protein-coding genes. However, here, we show that SWI/SNF complexes control the expression of microRNAs. We used a SMARCA4-deficient model of lung adenocarcinoma (LUAD) to track changes in the miRNome upon SMARCA4 restoration. We found that SMARCA4-SWI/SNF complexes induced significant changes in the expression of cancer-related microRNAs. The most significantly dysregulated microRNA was miR-222, whose expression was promoted by SMARCA4-SWI/SNF complexes, but not by SMARCA2-SWI/SNF complexes via their direct binding to a miR-222 enhancer region. Importantly, miR-222 expression decreased cell viability, phenocopying the tumor suppressor role of SMARCA4-SWI/SNF complexes in LUAD. Finally, we showed that the miR-222 enhancer region resides in a topologically associating domain that does not contain any cancer-related protein-coding genes, suggesting that miR-222 may be involved in exerting the tumor suppressor role of SMARCA4. Overall, this study highlights the relevant role of the SWI/SNF complex in regulating the non-coding genome, opening new insights into the pathogenesis of LUAD.


Subject(s)
Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Genes, Tumor Suppressor , MicroRNAs/genetics , Transcription Factors/metabolism , Adenocarcinoma of Lung/pathology , Cell Line, Tumor , DNA-Binding Proteins , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Humans , Models, Biological
4.
Cell Cycle ; 19(18): 2314-2326, 2020 09.
Article in English | MEDLINE | ID: mdl-32816599

ABSTRACT

TRIM71 is an important RNA-binding protein in development and disease, yet its direct targets have not been investigated globally. Here we describe a number of disease and developmentally-relevant TRIM71 RNA targets such as the MBNL family, LIN28B, MDM2, and TCF7L2. We describe a new role for TRIM71 as capable of positive or negative RNA regulation depending on the RNA target. We found that TRIM71 co-precipitated with IMP1 which could explain its multiple mechanisms of RNA regulation, as IMP1 is typically thought to stabilize RNAs. Deletion of the NHL domain of TRIM71 impacted its ability to bind to RNA and RNAs bound by congenital hydrocephalus-associated point mutations in the RNA-binding NHL domain of TRIM71 clustered closely with RNAs bound by the NHL deletion mutant. Our work expands the possible mechanisms by which TRIM71 may regulate RNAs and elucidates further potential RNA targets.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , RNA, Neoplasm/metabolism , RNA-Binding Proteins/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Cellular Senescence , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Point Mutation , Protein Binding , Protein Interaction Domains and Motifs , RNA Stability , RNA, Neoplasm/genetics , RNA-Binding Proteins/genetics , Sequence Deletion , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
6.
Nat Commun ; 10(1): 1881, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015438

ABSTRACT

Bromodomain-containing protein 9 (BRD9) is a recently identified subunit of SWI/SNF(BAF) chromatin remodeling complexes, yet its function is poorly understood. Here, using a genome-wide CRISPR-Cas9 screen, we show that BRD9 is a specific vulnerability in pediatric malignant rhabdoid tumors (RTs), which are driven by inactivation of the SMARCB1 subunit of SWI/SNF. We find that BRD9 exists in a unique SWI/SNF sub-complex that lacks SMARCB1, which has been considered a core subunit. While SMARCB1-containing SWI/SNF complexes are bound preferentially at enhancers, we show that BRD9-containing complexes exist at both promoters and enhancers. Mechanistically, we show that SMARCB1 loss causes increased BRD9 incorporation into SWI/SNF thus providing insight into BRD9 vulnerability in RTs. Underlying the dependency, while its bromodomain is dispensable, the DUF3512 domain of BRD9 is essential for SWI/SNF integrity in the absence of SMARCB1. Collectively, our results reveal a BRD9-containing SWI/SNF subcomplex is required for the survival of SMARCB1-mutant RTs.


Subject(s)
Chromatin Assembly and Disassembly , Rhabdoid Tumor/genetics , SMARCB1 Protein/genetics , Transcription Factors/metabolism , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Enhancer Elements, Genetic/genetics , Gene Knockdown Techniques , Gene Knockout Techniques , Humans , Mutation , Promoter Regions, Genetic/genetics , Protein Domains/drug effects , RNA, Small Interfering/metabolism , Rhabdoid Tumor/pathology , SMARCB1 Protein/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics
7.
RNA ; 25(3): 352-363, 2019 03.
Article in English | MEDLINE | ID: mdl-30538148

ABSTRACT

The accurate inheritance of genetic material is a basic necessity in all domains of life and an unexpectedly large number of RNA processing factors are required for mitotic progression and genome stability. NRDE2 (nuclear RNAi defective-2) is an evolutionarily conserved protein originally discovered for its role in nuclear RNA interference (RNAi) and heritable gene silencing in Caenorhabditis elegans (C. elegans). The function of the human NRDE2 gene remains poorly understood. Here we show that human NRDE2 is an essential protein required for suppressing intron retention in a subset of pre-mRNAs containing short, GC-rich introns with relatively weak 5' and 3' splice sites. NRDE2 preferentially interacts with components of the U5 small nuclear ribonucleoprotein (snRNP), the exon junction complex, and the RNA exosome. Interestingly, NRDE2-depleted cells exhibit greatly increased levels of genomic instability and DNA damage, as well as defects in centrosome maturation and mitotic progression. We identify the essential centriolar satellite protein, CEP131, as a direct NRDE2-regulated target. NRDE2 specifically binds to and promotes the efficient splicing of CEP131 pre-mRNA, and depleting NRDE2 dramatically reduces CEP131 protein expression, contributing to impaired recruitment of critical centrosomal proteins (e.g., γ-tubulin and Aurora Kinase A) to the spindle poles during mitosis. Our work establishes a conserved role for human NRDE2 in RNA splicing, characterizes the severe genomic instability phenotypes observed upon loss of NRDE2, and highlights the direct regulation of CEP131 splicing as one of multiple mechanisms through which such phenotypes might be explained.


Subject(s)
RNA Splicing Factors/metabolism , RNA Splicing , RNA-Binding Proteins/metabolism , Cell Line , Gene Expression Regulation , Humans , Introns , RNA Interference , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Small Interfering/genetics
8.
Nat Commun ; 8: 14648, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262751

ABSTRACT

Genes encoding subunits of SWI/SNF (BAF) chromatin remodelling complexes are collectively altered in over 20% of human malignancies, but the mechanisms by which these complexes alter chromatin to modulate transcription and cell fate are poorly understood. Utilizing mouse embryonic fibroblast and cancer cell line models, here we show via ChIP-seq and biochemical assays that SWI/SNF complexes are preferentially targeted to distal lineage specific enhancers and interact with p300 to modulate histone H3 lysine 27 acetylation. We identify a greater requirement for SWI/SNF at typical enhancers than at most super-enhancers and at enhancers in untranscribed regions than in transcribed regions. Our data further demonstrate that SWI/SNF-dependent distal enhancers are essential for controlling expression of genes linked to developmental processes. Our findings thus establish SWI/SNF complexes as regulators of the enhancer landscape and provide insight into the roles of SWI/SNF in cellular fate control.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Enhancer Elements, Genetic , Transcription Factors/metabolism , Acetylation , Animals , Cell Line, Tumor , Cells, Cultured , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Histones/metabolism , Humans , Lysine/metabolism , Mice, Knockout , Mice, Transgenic , Protein Binding , Transcription Factors/genetics
9.
Nat Genet ; 49(2): 289-295, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27941797

ABSTRACT

SMARCB1 (also known as SNF5, INI1, and BAF47), a core subunit of the SWI/SNF (BAF) chromatin-remodeling complex, is inactivated in nearly all pediatric rhabdoid tumors. These aggressive cancers are among the most genomically stable, suggesting an epigenetic mechanism by which SMARCB1 loss drives transformation. Here we show that, despite having indistinguishable mutational landscapes, human rhabdoid tumors exhibit distinct enhancer H3K27ac signatures, which identify remnants of differentiation programs. We show that SMARCB1 is required for the integrity of SWI/SNF complexes and that its loss alters enhancer targeting-markedly impairing SWI/SNF binding to typical enhancers, particularly those required for differentiation, while maintaining SWI/SNF binding at super-enhancers. We show that these retained super-enhancers are essential for rhabdoid tumor survival, including some that are shared by all subtypes, such as SPRY1, and other lineage-specific super-enhancers, such as SOX2 in brain-derived rhabdoid tumors. Taken together, our findings identify a new chromatin-based epigenetic mechanism underlying the tumor-suppressive activity of SMARCB1.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Enhancer Elements, Genetic/genetics , SMARCB1 Protein/genetics , Cell Line, Tumor , Chromatin/genetics , DNA-Binding Proteins/genetics , Epigenesis, Genetic/genetics , Humans , Mutation/genetics , Nuclear Proteins/genetics , Rhabdoid Tumor/genetics
10.
Nat Med ; 21(12): 1491-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26552009

ABSTRACT

Human cancer genome sequencing has recently revealed that genes that encode subunits of SWI/SNF chromatin remodeling complexes are frequently mutated across a wide variety of cancers, and several subunits of the complex have been shown to have bona fide tumor suppressor activity. However, whether mutations in SWI/SNF subunits result in shared dependencies is unknown. Here we show that EZH2, a catalytic subunit of the polycomb repressive complex 2 (PRC2), is essential in all tested cancer cell lines and xenografts harboring mutations of the SWI/SNF subunits ARID1A, PBRM1, and SMARCA4, which are several of the most frequently mutated SWI/SNF subunits in human cancer, but that co-occurrence of a Ras pathway mutation is correlated with abrogation of this dependence. Notably, we demonstrate that SWI/SNF-mutant cancer cells are primarily dependent on a non-catalytic role of EZH2 in the stabilization of the PRC2 complex, and that they are only partially dependent on EZH2 histone methyltransferase activity. These results not only reveal a shared dependency of cancers with genetic alterations in SWI/SNF subunits, but also suggest that EZH2 enzymatic inhibitors now in clinical development may not fully suppress the oncogenic activity of EZH2.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Mutation/genetics , Neoplasms/genetics , Polycomb Repressive Complex 2/metabolism , Transcription Factors/genetics , Acetylation/drug effects , Animals , Catalysis/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Enhancer of Zeste Homolog 2 Protein , Enzyme Inhibitors/pharmacology , Female , Humans , Indoles/pharmacology , Methylation/drug effects , Mice, Nude , Phosphorylation/drug effects , Pyridones/pharmacology , RNA, Small Interfering/metabolism , Xenograft Model Antitumor Assays
11.
Nat Med ; 20(3): 251-4, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24562383

ABSTRACT

Recent studies have revealed that ARID1A, encoding AT-rich interactive domain 1A (SWI-like), is frequently mutated across a variety of human cancers and also has bona fide tumor suppressor properties. Consequently, identification of vulnerabilities conferred by ARID1A mutation would have major relevance for human cancer. Here, using a broad screening approach, we identify ARID1B, an ARID1A homolog whose gene product is mutually exclusive with ARID1A in SWI/SNF complexes, as the number 1 gene preferentially required for the survival of ARID1A-mutant cancer cell lines. We show that loss of ARID1B in ARID1A-deficient backgrounds destabilizes SWI/SNF and impairs proliferation in both cancer cells and primary cells. We also find that ARID1A and ARID1B are frequently co-mutated in cancer but that ARID1A-deficient cancers retain at least one functional ARID1B allele. These results suggest that loss of ARID1A and ARID1B alleles cooperatively promotes cancer formation but also results in a unique functional dependence. The results further identify ARID1B as a potential therapeutic target for ARID1A-mutant cancers.


Subject(s)
DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Mutation , Neoplasms/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Alleles , Animals , Cell Line , Cell Nucleus/metabolism , Cell Proliferation , Chromatin/metabolism , False Positive Reactions , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Silencing , HEK293 Cells , Humans , Mice , RNA, Small Interfering/metabolism , Time Factors
12.
Clin Cancer Res ; 20(1): 21-7, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24122795

ABSTRACT

SWI/SNF chromatin remodeling complexes are pleomorphic multisubunit cellular machines that utilize the energy of ATP hydrolysis to modulate chromatin structure. The complexes interact with transcription factors at promoters and enhancers to modulate gene expression and contribute to lineage specification, differentiation, and development. Initial clues to a role in tumor suppression for SWI/SNF complexes came over a decade ago when the gene encoding the SMARCB1/SNF5 core subunit was found specifically inactivated in nearly all pediatric rhabdoid tumors. In the last three years, cancer-genome sequencing efforts have revealed an unexpectedly high mutation rate of SWI/SNF subunit genes, which are collectively mutated in 20% of all human cancers and approach the frequency of p53 mutations. Here, we provide a background on these newly recognized tumor suppressor complexes, discuss mechanisms implicated in the tumor suppressor activity, and highlight findings that may lead to potential therapeutic targets for SWI/SNF-mutant cancers.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Neoplasms/genetics , Transcription Factors/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Chromosomal Proteins, Non-Histone/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Molecular Targeted Therapy , Mutation , Neoplasms/drug therapy , Protein Subunits/genetics , Protein Subunits/metabolism , Signal Transduction , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
13.
J Bacteriol ; 195(1): 126-34, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23104811

ABSTRACT

Streptococcus mutans is a commensal member of the healthy plaque biofilm and the primary causative agent of dental caries. The present study is an investigation of SloR, a 25-kDa metalloregulatory protein that modulates genes responsible for S. mutans-induced cariogenesis. Previous studies of SloR homologues in other bacterial pathogens have identified three domains critical to repressor functionality: an N-terminal DNA-binding domain, a central dimerization domain, and a C-terminal FeoA (previously SH3-like) domain. We used site-directed mutagenesis to identify critical amino acid residues within each of these domains of the SloR protein. Select residues were targeted for mutagenesis, and nonconservative amino acid substitutions were introduced by overlap extension PCR. Furthermore, three C-terminally truncated SloR variants were generated using conventional PCR. The repressor functionality and DNA-binding ability of each variant was assessed using CAT reporter gene assays, real-time semiquantitative reverse transcriptase (qRT)-PCR, and electrophoretic mobility shift assays. We identified 12 residues within SloR that cause significant derepression of sloABC promoter activity (P < 0.05) compared to the results for wild-type SloR. Derepression was particularly noteworthy in metal ion-binding site 1 mutants, consistent with the site's importance in gene repression by SloR. In addition, a hyperactive SloR(E169A/Q170A) mutant was identified as having significantly heightened repression of sloABC promoter activity, and experiments with C-terminal deletion mutants support involvement of the FeoA domain in SloR-mediated gene repression. Given these results, we describe the functional domains of the S. mutans SloR protein and propose that the hyperactive mutant could serve as a target for rational drug design aimed at repressing SloR-mediated virulence gene expression.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Manganese/metabolism , Streptococcus mutans/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Circular Dichroism , DNA, Bacterial , Electrophoretic Mobility Shift Assay , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Streptococcus mutans/genetics , Streptococcus mutans/pathogenicity , Structure-Activity Relationship , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...