Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38067929

ABSTRACT

Microelectromechanical systems (MEMS)-based capacitive pressure sensors are conventionally fabricated from diaphragms made of Si, which has a high elastic modulus that limits the control of internal stress and constrains size reduction and low-pressure measurements. Ru-based thin-film metallic glass (TFMG) exhibits a low elastic modulus, and the internal stress can be controlled by heat treatment, so it may be a suitable diaphragm material for facilitating size reduction of the sensor without performance degradation. In this study, a Ru-based TFMG was used to realize a flattened diaphragm, and structural relaxation was achieved through annealing at 310 °C for 1 h in a vacuum. The diaphragm easily deformed, even under low differential pressure, when reduced in size. A diaphragm with a diameter of 1.7 mm was then applied to successfully fabricate a capacitive pressure sensor with a sensor size of 2.4 mm2. The sensor exhibited a linearity of ±3.70% full scale and a sensitivity of 0.09 fF/Pa in the differential pressure range of 0-500 Pa.

2.
Micromachines (Basel) ; 9(6)2018 May 28.
Article in English | MEDLINE | ID: mdl-30424197

ABSTRACT

Direct laser-writing techniques have attracted attention for their use in two- and three-dimensional printing technologies. In this article, we report on a micropatterning process that uses femtosecond laser reductive sintering of mixed CuO/NiO nanoparticles. The writing speed, laser fluence, and incident total energy were varied to investigate the influence of heat accumulation on the micropatterns formed by these materials. Heat accumulation and the thermal history of the laser irradiation process significantly affected the material composition and the thermoelectric properties of the fabricated micropatterns. Short laser irradiation durations and high laser fluences decrease the amount of metal oxide in the micropatterns. Selective fabrication of p-type and n-type thermoelectric micropatterns was demonstrated to be possible with control of the reduction and reoxidization reactions through the control of writing speed and total irradiation energy.

3.
Article in English | MEDLINE | ID: mdl-21244984

ABSTRACT

A new type of cylindrical ultrasonic linear microactuator (CULMA) is introduced. The traveling wave generation condition in the stator is presented, which was confirmed using simulation and experimentation. The design and fabrication process to develop the stator is described. The stator was successfully fabricated using metallic glass and a sputtering method, and the vibration of the prototype matched the simulation results. When the driving frequency is at 626 kHz, the traveling wave in the stator was observed. Loaded with a pipe slider, the slider movement was experimentally demonstrated and the motion measured with 26 mm/s in peak speed. This paper presents a traveling wave generation method in a CULMA which would also available in other microactuators or MEMS-scale ones.

4.
Article in English | MEDLINE | ID: mdl-20639154

ABSTRACT

A novel method is presented for investigation of the traveling wave propagation generated on a thin film pipe with a short length of several millimeters. As a bridge to connect two piezoelectric ceramic (lead zirconate titanate, PZT) tubes, a thin-film metallic glass (TFMG) pipe is fabricated by a new technique of rotating magnetron sputtering. The vibrator combines the vibration of the axial mode of the PZT tube and the radial mode of the TFMG pipe. Theoretical analyses of the TFMG pipe and PZT tube, with a comparison of the finite element modeling, clarify the vibration characteristics so that the proper geometrical sizes, suitable boundary conditions, and driving voltage signals are designed. In the experiment, the designed vibrator was fabricated and the vibration characteristics were measured by a laser Doppler vibrometer system. The pure traveling wave propagation obtained theoretically and experimentally demonstrates the validity of this work. This study shows a new way to achieve a pure traveling wave on a short cylindrical pipe driven by PZT tubes.

5.
Ultrasonics ; 50(3): 403-10, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19818980

ABSTRACT

A circular cylindrical piezoelectric transducer with radial polarization is proposed. The axial vibration characteristics of the transducer are studied by three different methods: analytical calculation, FEM simulation and experiment. The symmetric and asymmetric excitation conditions are discussed in the Haskins and Walsh model. For the resonance frequencies of the transducer, the results from the above three methods coincide well with each other. For the vibration amplitude, there are some deviations between the FEM simulation and measurement results; some possible reasons for this are discussed. The influence of the electrode patterns on the excitation modes are also investigated in detail. Based on the study described in this paper, the research methodology for a cylindrical piezoelectric transducer is clarified.


Subject(s)
Acoustics/instrumentation , Electrodes , Micro-Electrical-Mechanical Systems/instrumentation , Models, Theoretical , Transducers , Ultrasonography/instrumentation , Computer Simulation , Computer-Aided Design , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Vibration
6.
Article in English | MEDLINE | ID: mdl-19411220

ABSTRACT

A thin film rotating sputtering system is presented for fabrication of a circular cylindrical shell (CCS). The length, diameter, and thickness of the CCS are 5.0 mm, 1.5 mm, and 25 mum, respectively. To investigate the vibration characteristics, the CCS is fabricated on the outer surface of a piezoelectric ceramic tube (PCT). The vibration of PCT excited by driving voltage signals causes the vibration of the CCS, and the vibration characteristics can be measured using a laser Doppler vibrometer system. Furthermore, a finite element method (FEM) simulation and 2 analytical calculation methods are proposed for comparison with the measurement results. The frequency factor, the key factor that dominates the effective ranges of the 2 analytical methods, is determined as a value of 0.92 through a series of discussions. Combining the results of the 2 analytical calculation methods, good agreement of the analytical, FEM, and measurement results is obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...