Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
iScience ; 27(6): 110145, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38952682

ABSTRACT

Plasticity during the critical period is important for the functional maturation of cortical neurons. While characteristics of plasticity are diverse among cortical layers, it is unknown whether critical period timing is controlled by a common or unique molecular mechanism among them. We here clarified layer-specific regulation of the critical period timing of ocular dominance plasticity in the primary visual cortex. Mice lacking the endocannabinoid synthesis enzyme diacylglycerol lipase-α exhibited precocious critical period timing, earlier maturation of inhibitory synaptic function in layers 2/3 and 4, and impaired development of the binocular matching of orientation selectivity exclusively in layer 2/3. Activation of cannabinoid receptor restored ocular dominance plasticity at the normal critical period in layer 2/3. Suppression of GABAA receptor rescued precocious ocular dominance plasticity in layer 4. Therefore, endocannabinoids regulate critical period timing and maturation of visual function partly through the development of inhibitory synaptic functions in a layer-dependent manner.

2.
Am J Hum Genet ; 109(2): 328-344, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35077668

ABSTRACT

Progress in earlier detection and clinical management has increased life expectancy and quality of life in people with Down syndrome (DS). However, no drug has been approved to help individuals with DS live independently and fully. Although rat models could support more robust physiological, behavioral, and toxicology analysis than mouse models during preclinical validation, no DS rat model is available as a result of technical challenges. We developed a transchromosomic rat model of DS, TcHSA21rat, which contains a freely segregating, EGFP-inserted, human chromosome 21 (HSA21) with >93% of its protein-coding genes. RNA-seq of neonatal forebrains demonstrates that TcHSA21rat expresses HSA21 genes and has an imbalance in global gene expression. Using EGFP as a marker for trisomic cells, flow cytometry analyses of peripheral blood cells from 361 adult TcHSA21rat animals show that 81% of animals retain HSA21 in >80% of cells, the criterion for a "Down syndrome karyotype" in people. TcHSA21rat exhibits learning and memory deficits and shows increased anxiety and hyperactivity. TcHSA21rat recapitulates well-characterized DS brain morphology, including smaller brain volume and reduced cerebellar size. In addition, the rat model shows reduced cerebellar foliation, which is not observed in DS mouse models. Moreover, TcHSA21rat exhibits anomalies in craniofacial morphology, heart development, husbandry, and stature. TcHSA21rat is a robust DS animal model that can facilitate DS basic research and provide a unique tool for preclinical validation to accelerate DS drug development.


Subject(s)
Anxiety/genetics , Chromosomes, Human, Pair 21 , Down Syndrome/genetics , Founder Effect , Hyperkinesis/genetics , Animals , Anxiety/metabolism , Anxiety/pathology , Cerebellum/metabolism , Cerebellum/pathology , Disease Models, Animal , Down Syndrome/metabolism , Down Syndrome/pathology , Female , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Hyperkinesis/metabolism , Hyperkinesis/pathology , Karyotype , Learning , Male , Mutagenesis, Insertional , Organ Size , Posture , Prosencephalon/metabolism , Prosencephalon/pathology , Rats , Rats, Transgenic
4.
Hypertens Res ; 44(10): 1316-1325, 2021 10.
Article in English | MEDLINE | ID: mdl-34345011

ABSTRACT

Reducing salt and increasing potassium intake are recommended lifestyle modifications for patients with hypertension. The estimated 24-h urinary salt excretion value from spot urine using Tanaka's formula and the salt check-sheet scores, questionnaire-based scores of salt intake, are practical indices of daily salt intake. However, few studies have evaluated salt intake with these methods in hypertensive outpatients. We examined salt and potassium intake with the spot urine method and the salt check-sheet scores of hypertensive outpatients in a multi-facility, real-world setting and examined whether the salt or potassium intake evaluated with these methods related to inadequate blood pressure control. Hypertensive outpatients from 12 medical facilities in the Okinawa prefecture were enrolled from November 2011 to April 2014 (n = 1559, mean age 63.9 years, 46% women). The mean blood pressure, urinary salt excretion value, urinary potassium excretion value, and total score on the salt check-sheet were 129/75 mmHg, 8.7 g/day, 1.6 g/day, and 10.4 points, respectively. The urinary salt excretion value and total score on the salt check-sheet but not urinary potassium excretion value were associated with inadequate blood pressure control (≥140/90 mmHg). Higher body mass index, estimated glomerular filtration rate, urinary potassium excretion value, total score on the salt check-sheet, and presence of inadequate blood pressure control were associated with high urinary salt excretion (≥10.2 g/day). In conclusion, hypertensive outpatients with high urinary salt excretion values estimated using Tanaka's formula or with high scores on the salt check sheet may be candidates for more intensive salt reduction guidance.


Subject(s)
Hypertension , Sodium Chloride, Dietary , Blood Pressure , Female , Humans , Male , Middle Aged , Outpatients , Potassium , Surveys and Questionnaires
5.
Front Neural Circuits ; 15: 637638, 2021.
Article in English | MEDLINE | ID: mdl-33935657

ABSTRACT

Monocular deprivation (MD) of vision during early postnatal life induces amblyopia, and most neurons in the primary visual cortex lose their responses to the closed eye. Anatomically, the somata of neurons in the closed-eye recipient layer of the lateral geniculate nucleus (LGN) shrink and their axons projecting to the visual cortex retract. Although it has been difficult to restore visual acuity after maturation, recent studies in rodents and cats showed that a period of exposure to complete darkness could promote recovery from amblyopia induced by prior MD. However, in cats, which have an organization of central visual pathways similar to humans, the effect of dark rearing only improves monocular vision and does not restore binocular depth perception. To determine whether dark rearing can completely restore the visual pathway, we examined its effect on the three major concomitants of MD in individual visual neurons, eye preference of visual cortical neurons and soma size and axon morphology of LGN neurons. Dark rearing improved the recovery of visual cortical responses to the closed eye compared with the recovery under binocular conditions. However, geniculocortical axons serving the closed eye remained retracted after dark rearing, whereas reopening the closed eye restored the soma size of LGN neurons. These results indicate that dark rearing incompletely restores the visual pathway, and thus exerts a limited restorative effect on visual function.


Subject(s)
Amblyopia , Visual Cortex , Animals , Axons , Cats , Geniculate Bodies , Primary Visual Cortex , Sensory Deprivation
6.
Yonago Acta Med ; 63(4): 266-271, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33253346

ABSTRACT

BACKGROUND: Visual examination by the naked eye is integral to medical diagnosis and surgery. The illumination in conditioned color is widely used for visual inspection in the industry but has not been introduced to the biomedical context. The color that can enhance the visual recognition of individual tissues is still unknown. Therefore, we carried out a visual recognition experiment on biological specimens to determine the subjective preference for illumination color based on questionnaires. METHODS: Twenty healthy subjects were asked to compare the visual recognizability of several rat tissues between the illuminations in test colors and white. The rats were anesthetized, and the femoral vein and abdominal cavity were exposed. Seven tissues were selected for a visual recognition test. Illumination was generated using a multi-color LED light. The subjects observed the tissues under the illuminations of white and one of the test colors alternately and reported which illumination is suitable for visual recognition using a questionnaire. RESULTS: The analysis of the questionnaires showed that the blue test color was more effective than white illumination in the visual recognition of fine structures such as the branching of blood vessels and nerves, and red illumination disturbed the visual recognizability of the same tissues. On the other hand, the red but not the blue illumination improved the visual recognizability of the vein beneath the intact skin. As to the recognition of individual tissues in the abdominal cavity, the white illumination gave a better visual recognizability compared to every other test color. CONCLUSION: This study shows that the illumination color influences the visual recognition of biological specimens and the adequate color for the visual recognition of specific tissue parts is distinct among biological specimens. Using the lighting system to make fine adjustments to the illumination color may be useful in medical diagnosis and surgery.

7.
Neuroscience ; 425: 146-156, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31785351

ABSTRACT

Fluoro-Jade C (FJC) staining is widely used for the specific detection of all degenerating mature neurons, including apoptotic, necrotic, and autophagic cells. However, whether FJC staining can detect degenerating immature neurons and neural stem/precursor cells remains unclear. In addition, some conflicting studies have shown that FJC and its ancestral dyes, Fluoro-Jade (FJ) and FJB, can label resting/activated astrocytes and microglia. In the present study, we examined the validity of FJC staining for the detection of neuronal cells in adult and embryonic mouse brains under normal and injured conditions. In the adult rodent subventricular zone (SVZ)-rostral migratory stream (RMS)-olfactory bulb (OB) system, apoptosis associated with neurogenesis occurs under normal conditions. Using this system, we detected FCJ positive (+) cells, some of which were doublecortin (DCX)(+) neuroblasts, in addition to neuronal nuclei (NeuN)(+) mature neurons. FJC negative (-) apoptotic cells expressing activated Caspase 3 were also observed, and a small number of FJC(+)/ionized calcium-binding adaptor molecule 1 (Iba1)(+) microglia and FJC(+)/glial fibrillary acidic protein (GFAP)(+) astrocytes were observed in the normal brain. Next, we analyzed embryonic brains, in which the apoptosis of neural stem/precursor cells was induced by the administration of N-ethyl-N-nitrosourea (ENU) or ethanol at embryonic day 14 or 10, respectively. In those brains, FJC(+) neural stem/precursor cells and neuroepithelial cells expressing SRY-related HMG-box 2 (Sox2) were observed. Surprisingly degenerating mesenchymal cells were also FJC(+). The present study indicates that FJC is a reliable marker for degenerating neuronal cells during all differentiation stages. However, FJC could also label degenerating non-neuronal cells under some conditions.


Subject(s)
Brain Injuries/pathology , Nerve Degeneration/pathology , Neural Stem Cells/metabolism , Neurons/metabolism , Staining and Labeling , Animals , Astrocytes/metabolism , Brain/metabolism , Brain/pathology , Brain Injuries/metabolism , Cell Differentiation/physiology , Cell Movement/physiology , Doublecortin Protein , Female , Male , Mice , Microglia/metabolism
8.
J Comp Neurol ; 526(12): 1927-1942, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29752725

ABSTRACT

In the adult rodent subventricular zone (SVZ), there are neural stem cells (NSCs) and the specialized neurogenic niche is critical to maintain their stemness. To date, many cellular and noncellular factors that compose the neurogenic niche and markers to identify subpopulations of Type A cells have been confirmed. In particular, neurotransmitters regulate adult neurogenesis and mature neurons in the SVZ have been only partially analyzed. Moreover, Type A cells, descendants of NSCs, are highly heterogeneous and more molecular markers are still needed to identify them. In the present study, we systematically classified NeuN, commonly used as a marker of mature and immature post-mitotic neurons, immunopositive (+) cells within the adult mouse SVZ. These SVZ-NeuN+ cells (SVZ-Ns) were mainly classified into two types. One was mature SVZ-Ns (M-SVZ-Ns). Neurochemical properties of M-SVZ-Ns were similar to those of striatal neurons, but their birth date and morphology were different. M-SVZ-Ns were generated during embryonic and early postnatal stages with bipolar peaks and extended their processes along the wall of the lateral ventricle. The second type was small SVZ-Ns (S-SVZ-Ns) with features of Type A cells. They expressed not only markers of Type A cells, but also proliferated and migrated from the SVZ to the olfactory bulb. Furthermore, S-SVZ-Ns could be classified into two types by their spatial locations and glutamic acid decarboxylase 67 expression. Our data indicate that M-SVZ-Ns are a new component of the neurogenic niche and S-SVZ-Ns are newly identified subpopulations of Type A cells.


Subject(s)
Lateral Ventricles/cytology , Nerve Tissue Proteins/analysis , Neural Stem Cells/cytology , Neurons/cytology , Nuclear Proteins/analysis , Stem Cell Niche , Animals , Biomarkers/analysis , DNA-Binding Proteins , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Neurogenesis/physiology
9.
Neurosci Res ; 123: 27-35, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28450152

ABSTRACT

The open field test is one of the most popular ethological tests to assess anxiety-like behavior in rodents. In the present study, we examined the effect of early deprivation (ED), a model of early life stress, on anxiety-like behavior in rats. In ED animals, we failed to find significant changes in the time spent in the center or thigmotaxis area of the open field, the common indexes of anxiety-like behavior. However, we found a significant increase in high-leaning behavior in which animals lean against the wall standing on their hindlimbs while touching the wall with their forepaws at a high position. The high-leaning behavior was decreased by treatment with an anxiolytic, diazepam, and it was increased under intense illumination as observed in the center activity. In addition, we compared the high-leaning behavior and center activity under various illumination intensities and found that the high-leaning behavior is more sensitive to illumination intensity than the center activity in the particular illumination range. These results suggest that the high-leaning behavior is a novel anxiety-like behavior in the open field test that can complement the center activity to assess the anxiety state of rats.


Subject(s)
Anxiety/etiology , Exploratory Behavior/physiology , Learning/physiology , Stress, Psychological/complications , Animals , Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Diazepam/therapeutic use , Disease Models, Animal , Exploratory Behavior/drug effects , Female , Male , Motor Activity/physiology , Random Allocation , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric
10.
Front Behav Neurosci ; 10: 250, 2016.
Article in English | MEDLINE | ID: mdl-28167902

ABSTRACT

The orbitofrontal cortex (OFC) is involved in emotional processing, and orbitofrontal abnormalities have often been observed in various affective disorders. Thus, chronic dysfunction of the OFC may cause symptoms of affective disorders, such as anxiety, depression and impulsivity. Previous studies have investigated the effect of orbitofrontal dysfunction on anxiety-like behavior and impulsive aggression in rodents, but the results are inconsistent possibly reflecting different methods of OFC inactivation. These studies used either a lesion of the OFC, which may affect other brain regions, or a transient inactivation of the OFC, whose effect may be restored in time and not reflect effects of chronic OFC dysfunction. In addition, there has been no study on the effect of orbitofrontal inactivation on depression-like behavior in rodents. Therefore, the present study examined whether chronic inactivation of the OFC by continuous infusion of a GABAA receptor agonist, muscimol, causes behavioral abnormalities in rats. Muscimol infusion inactivated the ventral and lateral part of the OFC. Following a week of OFC inactivation, the animals showed an increase in anxiety-like behavior in the open field test and light-dark test. Impulsive aggression was also augmented in the chronically OFC-inactivated animals because they showed increased frequency of fighting behavior induced by electric foot shock. On the other hand, chronic OFC inactivation reduced depression-like behavior as evaluated by the forced swim test. Additionally, it did not cause a significant change in corticosterone secretion in response to restraint stress. These data suggest that orbitofrontal neural activity is involved in the regulation of anxiety- and depression-like behaviors and impulsive aggression in rodents.

11.
Brain Struct Funct ; 220(3): 1307-16, 2015.
Article in English | MEDLINE | ID: mdl-24526275

ABSTRACT

Genetic manipulation is widely used to research the central nervous system (CNS). The manipulation of molecular expression in a small number of neurons permits the detailed investigation of the role of specific molecules on the function and morphology of the neurons. Electroporation is a broadly used technique for gene transfer in the CNS. However, the targeting of gene transfer using electroporation in postnatal animals was restricted to the cortex, hippocampus, or the region facing the ventricle in previous reports. Electroporation targeting of deep brain structures, such as the thalamus, has been difficult. We introduce a novel electroporation technique that enables gene transfer to a physiologically identified deep brain region using a glass pipette. We recorded neural activity in young-adult mice to identify the location of the lateral geniculate nucleus (LGN) of the thalamus, using a glass pipette electrode containing the plasmid DNA encoding enhanced green fluorescent protein (EGFP). The location of the LGN was confirmed by monitoring visual responses, and the plasmid solution was pressure-injected into the recording site. Voltage pulses were delivered through the glass pipette electrode. Several EGFP-labeled somata and dendrites were observed in the LGN after a few weeks, and labeled axons were found in the visual cortex. The EGFP-expressing structures were observed in detail sufficient to reconstruct their morphology in three dimensions. We further confirmed the applicability of this technique in cats. This method should be useful for the transfer of various genes into cells in physiologically identified brain regions in rodents and gyrencephalic mammals.


Subject(s)
Electroporation/instrumentation , Electroporation/methods , Gene Transfer Techniques/instrumentation , Green Fluorescent Proteins/metabolism , Thalamus/metabolism , Animals , Axons/metabolism , Cats , DNA/administration & dosage , Dendrites/metabolism , Electrodes , Geniculate Bodies/metabolism , Green Fluorescent Proteins/administration & dosage , Green Fluorescent Proteins/genetics , Mice , Mice, Inbred C57BL , Plasmids/genetics
12.
Proc Natl Acad Sci U S A ; 111(42): 15226-31, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25288737

ABSTRACT

Axon branching is remodeled by sensory-evoked and spontaneous neuronal activity. However, the underlying molecular mechanism is largely unknown. Here, we demonstrate that the netrin family member netrin-4 (NTN4) contributes to activity-dependent thalamocortical (TC) axon branching. In the postnatal developmental stages of rodents, ntn4 expression was abundant in and around the TC recipient layers of sensory cortices. Neuronal activity dramatically altered the ntn4 expression level in the cortex in vitro and in vivo. TC axon branching was promoted by exogenous NTN4 and suppressed by depletion of the endogenous protein. Moreover, unc-5 homolog B (Unc5B), which strongly bound to NTN4, was expressed in the sensory thalamus, and knockdown of Unc5B in thalamic cells markedly reduced TC axon branching. These results suggest that NTN4 acts as a positive regulator for TC axon branching through activity-dependent expression.


Subject(s)
Axons/physiology , Cerebral Cortex/physiology , Nerve Growth Factors/physiology , Receptors, Cell Surface/metabolism , Thalamus/physiology , Animals , Axons/metabolism , Cerebral Cortex/metabolism , Coculture Techniques , Electroporation , Gene Expression Profiling , Gene Expression Regulation , HEK293 Cells , Heterozygote , Humans , Mice , Mice, Knockout , Netrin Receptors , Netrins , Rats , Rats, Sprague-Dawley , Signal Transduction , Thalamus/metabolism , Visual Cortex/metabolism
13.
Hum Mol Genet ; 23(21): 5672-82, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24908666

ABSTRACT

Latent TGF-ß-binding protein-2 (LTBP-2) is an extracellular matrix protein associated with microfibrils. Homozygous mutations in LTBP2 have been found in humans with genetic eye diseases such as congenital glaucoma and microspherophakia, indicating a critical role of the protein in eye development, although the function of LTBP-2 in vivo has not been well understood. In this study, we explore the in vivo function of LTBP-2 by generating Ltbp2(-/-) mice. Ltbp2(-/-) mice survived to adulthood but developed lens luxation caused by compromised ciliary zonule formation without a typical phenotype related to glaucoma, suggesting that LTBP-2 deficiency primarily causes lens dislocation but not glaucoma. The suppression of LTBP2 expression in cultured human ciliary epithelial cells by siRNA disrupted the formation of the microfibril meshwork by the cells. Supplementation of recombinant LTBP-2 in culture medium not only rescued the microfibril meshwork formation in LTBP2-suppressed ciliary epithelial cells but also restored unfragmented and bundled ciliary zonules in Ltbp2(-/-) mouse eyes under organ culture. Although several reported human mutant LTBP-2 proteins retain normal domain structure and keep the fibrillin-1-binding site intact, none of these mutant proteins were secreted from their producing cells, suggesting secretion arrest occurred to the LTBP-2 mutants owing to conformational alteration. The findings of this study suggest that LTBP-2 is an essential component for the formation of microfibril bundles in ciliary zonules.


Subject(s)
Cilia/genetics , Latent TGF-beta Binding Proteins/genetics , Microfibrils/genetics , Animals , Cell Line , Ectopia Lentis/genetics , Ectopia Lentis/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibrillin-1 , Fibrillins , Gene Knockout Techniques , Gene Targeting , Genotype , Glaucoma/genetics , Humans , Latent TGF-beta Binding Proteins/metabolism , Mice , Mice, Knockout , Microfilament Proteins/metabolism , Mutation , Phenotype , Protein Binding
14.
Clin Ophthalmol ; 7: 1397-402, 2013.
Article in English | MEDLINE | ID: mdl-23874080

ABSTRACT

INTRODUCTION: Posterior capsule rupture causes instant vitreous contamination, resulting in endophthalmitis. However, transfer of intracameral moxifloxacin (MFLX) to the vitreous has not been examined in detail. We investigated vitreous antibiotic concentrations following intracameral MFLX in both ruptured and intact posterior capsular eyes. METHODS: Experiment 1: Intraocular lenses were inserted into 21 extracted porcine eyes by one of the following three methods: (1) Irrigation: Throughout surgery, 33-fold diluted MFLX irrigation solution (150 µg/mL) was used; (2) Bag and chamber flushing: After surgery, the anterior chamber and area behind the intraocular lenses were irrigated with 30-fold diluted MFLX (167 µg/mL) using a 5 mL syringe; (3) Simple injection: Tenfold diluted MFLX (50 µg in 0.1 mL) was injected intracamerally at the conclusion of surgery. The eyeballs were frozen and the anterior, central, and posterior portions of the vitreous were cubed. After defrosting, concentrations were measured using high-performance liquid chromatography. Experiment 2: The same procedure was conducted for 18 eyes in which the posterior capsule had been ruptured. RESULTS: Experiment 1: Transfer of intracameral MFLX to the anterior vitreous was approximately 1% (1.56-2.20 µg/mL) regardless of the administration method. Experiment 2: MFLX reached a high concentration in the vitreous with irrigation solution administration (maximum 30.22 µg/mL). The concentrations reached by simple injection or flushing were significantly less than those obtained by irrigation. CONCLUSION: With an intact posterior capsule, intracameral MFLX exhibited limited effects on vitreous concentration. Despite the fact that the risk of infection clearly increases in cases of ruptured capsule, no special infection prevention protocol has been proposed. It was confirmed that irrigation solution caused vitreous contamination in ruptured eyes within only a short irrigation time. In this case, intracameral administration did not necessarily achieve preventive concentrations for endophthalmitis, but it appears that an effective drug concentration can be achieved in the vitreous by the administration of irrigation solution.

15.
PLoS One ; 8(1): e53082, 2013.
Article in English | MEDLINE | ID: mdl-23308141

ABSTRACT

The mammalian visual system exhibits significant experience-induced plasticity in the early postnatal period. While physiological studies have revealed the contribution of the CB1 cannabinoid receptor (CB1) to developmental plasticity in the primary visual cortex (V1), it remains unknown whether the expression and localization of CB1 is regulated during development or by visual experience. To explore a possible role of the endocannabinoid system in visual cortical plasticity, we examined the expression of CB1 in the visual cortex of mice. We found intense CB1 immunoreactivity in layers II/III and VI. CB1 mainly localized at vesicular GABA transporter-positive inhibitory nerve terminals. The amount of CB1 protein increased throughout development, and the specific laminar pattern of CB1 appeared at P20 and remained until adulthood. Dark rearing from birth to P30 decreased the amount of CB1 protein in V1 and altered the synaptic localization of CB1 in the deep layer. Dark rearing until P50, however, did not influence the expression of CB1. Brief monocular deprivation for 2 days upregulated the localization of CB1 at inhibitory nerve terminals in the deep layer. Taken together, the expression and the localization of CB1 are developmentally regulated, and both parameters are influenced by visual experience.


Subject(s)
Receptor, Cannabinoid, CB1/analysis , Receptor, Cannabinoid, CB1/metabolism , Visual Cortex/growth & development , Animals , Electrical Synapses/ultrastructure , Gene Expression Regulation, Developmental , Light , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/ultrastructure , Receptor, Cannabinoid, CB1/genetics , Sensory Deprivation , Vision, Monocular , Visual Cortex/metabolism
16.
Cereb Cortex ; 23(10): 2423-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-22875858

ABSTRACT

Monocular deprivation (MD) during the critical period reduces the visual cortical response to the deprived eye and causes the geniculocortical axons serving the deprived eye to retract. When MD is combined with a pharmacological inhibition of the visual cortex, the cortical neurons weaken their response to an open eye and the input axons serving the open eye retract. To determine whether the 2 types of ocular dominance (OD) plasticity reflect an experience-driven modification of neural circuits sharing the same developmental time course, we analyzed the OD plasticity in an inhibited visual cortex using cats at different ages. MD did not affect the OD distribution in the inhibited cortex of adults, confirming that the OD plasticity in the inhibited cortex represents a developmental plasticity. In developing animals, the OD plasticity in the inhibited cortex was observed at the late phase of the critical period (P40-46) but not at the early phase (P22-26). We found a retraction of input axons serving an open eye at the late phase, whereas those at the early phase were comparable to the axons of normal animals. Therefore, the maturation of visual circuits might include an experience-driven rearrangement of thalamocortical projections during the late phase of development.


Subject(s)
Axons/ultrastructure , Critical Period, Psychological , Geniculate Bodies/growth & development , Geniculate Bodies/physiology , Visual Cortex/growth & development , Visual Cortex/physiology , Animals , Cats , Female , GABA-A Receptor Agonists/pharmacology , Male , Muscimol/pharmacology , Neural Pathways , Photic Stimulation , Sensory Deprivation/physiology , Visual Cortex/drug effects
17.
J Biol Chem ; 286(24): 21478-87, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21527636

ABSTRACT

In adult rat brains, brain-derived neurotrophic factor (BDNF) rhythmically oscillates according to the light-dark cycle and exhibits unique functions in particular brain regions. However, little is known of this subject in juvenile rats. Here, we examined diurnal variation in BDNF and neurotrophin-3 (NT-3) levels in 14-day-old rats. BDNF levels were high in the dark phase and low in the light phase in a majority of brain regions. In contrast, NT-3 levels demonstrated an inverse phase relationship that was limited to the cerebral neocortex, including the visual cortex, and was most prominent on postnatal day 14. An 8-h phase advance of the light-dark cycle and sleep deprivation induced an increase in BDNF levels and a decrease in NT-3 levels in the neocortex, and the former treatment reduced synaptophysin expression and the numbers of synaptophysin-positive presynaptic terminals in cortical layer IV and caused abnormal BDNF and NT-3 rhythms 1 week after treatment. A similar reduction of synaptophysin expression was observed in the cortices of Bdnf gene-deficient mice and Ca(2+)-dependent activator protein for secretion 2 gene-deficient mice with abnormal free-running rhythm and autistic-like phenotypes. In the latter mice, no diurnal variation in BDNF levels was observed. These results indicate that regular rhythms of BDNF and NT-3 are essential for correct cortical network formation in juvenile rodents.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Gene Expression Regulation , Neurotrophin 3/metabolism , Animals , Brain/metabolism , Calcium/metabolism , Cerebral Cortex/metabolism , Male , Mice , Models, Neurological , Photoperiod , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Synapses/metabolism
18.
Neurosci Res ; 64(1): 118-27, 2009 May.
Article in English | MEDLINE | ID: mdl-19428690

ABSTRACT

In the visual system, the afferent axons from the dorsal lateral geniculate nucleus (dLGN) to the primary visual cortex (V1) show significant activity-dependent plasticity in early postnatal life. To determine whether activity-dependent plasticity operates also in feedback projections from V1 to dLGN, we inactivated cortical inputs pharmacologically and examined possible changes in the density of synaptic proteins, vesicular glutamate transporter 1 (VGluT1) and type 1 metabotropic glutamate receptor alpha (mGluR1alpha), which locate pre- and postsynaptically at feedback projections, respectively in dLGN of rats. The intensity of the immunohistochemical signal of mGluR1alpha in dLGN significantly decreased following the cortical inactivation for at least 2 days, and the decrease was maintained under cortical inactivation until 28 days. On the other hand, the signal intensity of VGluT1 showed a significant increase following 14 or 28 days of cortical inactivation. In adult rats, however, we found no significant change in VGluT1 signal intensity and only a small and transient downregulation of mGluR1alpha following 7-day inactivation. Thus, the decrease in presynaptic activity induces a rapid downregulation of postsynaptic mGluR1alpha followed by a delayed upregulation of presynaptic VGluT1 in young rats. These results suggest that feedback synapses are regulated by neural activity during development.


Subject(s)
Geniculate Bodies/physiology , Neuronal Plasticity/physiology , Synapses/physiology , Visual Cortex/physiology , Aging , Animals , Early Growth Response Protein 1/metabolism , Immunoenzyme Techniques , Immunohistochemistry , Kainic Acid/administration & dosage , Muscimol/administration & dosage , Neurotoxins/administration & dosage , Rats , Rats, Long-Evans , Receptors, Metabotropic Glutamate/metabolism , Vesicular Glutamate Transport Protein 1/metabolism , Visual Cortex/drug effects , Visual Pathways/drug effects , Visual Pathways/physiology
19.
PLoS One ; 4(1): e4193, 2009.
Article in English | MEDLINE | ID: mdl-19142221

ABSTRACT

BACKGROUND: Experience during early postnatal development plays an important role in the refinement of specific neural connections in the brain. In the mammalian visual system, altered visual experiences induce plastic adaptation of visual cortical responses and guide rearrangements of afferent axons from the lateral geniculate nucleus. Previous studies using visual deprivation demonstrated that the afferents serving an open eye significantly retract when cortical neurons are pharmacologically inhibited by applying a gamma-aminobutyric acid type A receptor agonist, muscimol, whereas those serving a deprived eye are rescued from retraction, suggesting that presynaptic activity can lead to the retraction of geniculocortical axons in the absence of postsynaptic activity. Because muscimol application suppresses the spike activity of cortical neurons leaving transmitter release intact at geniculocortical synapses, local synaptic interaction may underlie the retraction of active axons in the inhibited cortex. METHOD AND FINDINGS: New studies reported here determined whether experience-driven axon retraction can occur in the visual cortex inactivated by blocking synaptic inputs. We inactivated the primary visual cortex of kittens by suppressing synaptic transmission with cortical injections of botulinum neurotoxin type E, which cleaves a synaptic protein, SNAP-25, and blocks transmitter release, and examined the geniculocortical axon morphology in the animals with normal vision and those deprived of vision binocularly. We found that afferent axons in the animals with normal vision showed a significant retraction in the inactivated cortex, as similarly observed in the muscimol-treated cortex, whereas the axons in the binocularly deprived animals were preserved. CONCLUSIONS: Therefore, the experience-driven axon retraction in the inactivated cortex can proceed in the absence of synaptic transmission. These results suggest that presynaptic mechanisms play an important role in the experience-driven refinement of geniculocortical axons.


Subject(s)
Axons/physiology , Learning/physiology , Synaptic Transmission , Visual Cortex/drug effects , Animals , Animals, Newborn , Cats , Geniculate Bodies , Muscimol/pharmacology , Neurons, Afferent , Sensory Deprivation , Visual Cortex/growth & development , Visual Pathways
20.
Exp Neurol ; 213(2): 431-8, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18691571

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease, which selectively affects motor neurons throughout the central nervous system. The extensive distribution of motor neurons is an obstacle to applying cell transplantation therapy for the treatment of ALS. To overcome this problem, we developed a cell transplantation method via the fourth cerebral ventricle in mice. We used mouse olfactory ensheathing cells (OECs) and rat mesenchymal stem cells (MSCs) as donor cells. OECs are reported to promote regeneration and remyelination in the spinal cord, while MSCs have a capability to differentiate into several types of specific cells including neural cells. Furthermore both types of cells can be relatively easily obtained by biopsy in human. Initially, we confirmed the safety of the operative procedure and broad distribution of grafted cells in the spinal cord using wild-type mice. After transplantation, OECs distributed widely and survived as long as 100 days after transplantation, with a time-dependent depletion of cell number. In ALS model mice, OEC transplantation revealed no adverse effects but no significant differences in clinical evaluation were found between OEC-treated and non-transplanted animals. After MSC transplantation into the ALS model mice, females, but not males, showed a statistically longer disease duration than the non-transplanted controls. We conclude that intrathecal transplantation could be a promising way to deliver donor cells to the central nervous system. Further experiments to elucidate relevant conditions for optimal outcomes are required.


Subject(s)
Amyotrophic Lateral Sclerosis/surgery , Disease Models, Animal , Mesenchymal Stem Cell Transplantation/methods , Amyotrophic Lateral Sclerosis/pathology , Animals , Cell Transplantation/methods , Cell Transplantation/trends , Cells, Cultured , Female , Male , Mesenchymal Stem Cell Transplantation/trends , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Olfactory Mucosa/cytology , Olfactory Mucosa/transplantation , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...