Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Rev Sci Instrum ; 89(10): 103104, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399831

ABSTRACT

A flexible light guide was developed for an ITER (International Thermonuclear Experimental Reactor) poloidal polarimeter which is a passive laser beam alignment and stabilization system for free-space propagation of a wide range of wavelengths. The advantages of using a flexible light guide are (1) to compensate the relative movement between the floor of a building and an optical table, (2) to negate assembly error of the optical transmission line, (3) to minimize the time required for assembly of the line and laser position alignment in a radiological environment, and (4) to transmit a wide wavelength range from visible to far-infrared. The authors fabricated a flexible light guide with an inner diameter of 120 mm and with a motion range of 10 cm. Pointing stability of the laser beam passing through the flexible light guide was less than 70 µrad when the support moved ±50 mm. A flexible light guide error of 70 µrad leads to a beam position displacement of 0.98 mm at a beam position steering mirror ITER poloidal polarimeter that is located 14 m from the flexible light guide. The achieved error is stable enough to guide the laser beam to its target in ITER.

2.
Rev Sci Instrum ; 88(7): 076107, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28764515

ABSTRACT

We have developed a laser beam combiner employing a high-speed rotating half-wave plate based on the specific requirements of the Thomson scattering measurement systems in the ITER. The polarization extinction ratio of the output beam may exceed 1000 and was maintained for more than 1 h via feedback control of the half-wave plate rotation speed. The pointing fluctuations introduced by rotating the half-wave plate were in the order of microradians. The high-speed rotating half-wave plate provides a lossless means of combining laser beams together with stable beam pointing.

3.
Rev Sci Instrum ; 87(9): 093502, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27782603

ABSTRACT

This paper evaluates the accuracy of electron temperature measurements and relative transmissivities of double-pass Thomson scattering diagnostics. The electron temperature (Te) is obtained from the ratio of signals from a double-pass scattering system, then relative transmissivities are calculated from the measured Te and intensity of the signals. How accurate the values are depends on the electron temperature (Te) and scattering angle (θ), and therefore the accuracy of the values was evaluated experimentally using the Large Helical Device (LHD) and the Tokyo spherical tokamak-2 (TST-2). Analyzing the data from the TST-2 indicates that a high Te and a large scattering angle (θ) yield accurate values. Indeed, the errors for scattering angle θ = 135° are approximately half of those for θ = 115°. The method of determining the Te in a wide Te range spanning over two orders of magnitude (0.01-1.5 keV) was validated using the experimental results of the LHD and TST-2. A simple method to provide relative transmissivities, which include inputs from collection optics, vacuum window, optical fibers, and polychromators, is also presented. The relative errors were less than approximately 10%. Numerical simulations also indicate that the Te measurements are valid under harsh radiation conditions. This method to obtain Te can be considered for the design of Thomson scattering systems where there is high-performance plasma that generates harsh radiation environments.

4.
Rev Sci Instrum ; 85(11): 11D407, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430170

ABSTRACT

In the KSTAR Tokamak, a "Tangential Thomson Scattering" (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10-15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS system is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.

5.
Rev Sci Instrum ; 85(11): 11D837, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430250

ABSTRACT

A new high speed Nd:YAG Thomson scattering AD Convertor (HYADC) that can directly convert the detected scattered light signal into a digital signal is under development. The HYADC is expected to improve a signal to noise ratio of the Nd:YAG Thomson scattering measurement. The data storage of the HYADC which is required for the direct conversion of whole plasma discharge is drastically reduced by a ring buffer memory and a stop trigger system. Data transfer of the HYADC is performed by the SiTCP. The HYADC is easily expandable to a multi-channel system by the distributed data processing, and is very compact and easy to implement as a built-in system of the polychromators.

6.
Rev Sci Instrum ; 85(11): 11D865, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430278

ABSTRACT

This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (Te) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.

7.
Rev Sci Instrum ; 84(10): 103503, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24182106

ABSTRACT

This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

8.
Rev Sci Instrum ; 84(9): 093506, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24089827

ABSTRACT

Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ~0.3 mm and ~0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.

9.
Rev Sci Instrum ; 83(10): 10E328, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126986

ABSTRACT

A new type polychromator has been designed for the edge Thomson scattering system in ITER. Signal light is parallelly dispersed into two parts at the first interference filter. Spectral transmissivities for some spectral channels may enhance better than the conventional type polychromator. In the new type polychromator, the misalignment due to the machine accuracy is expected to be within the margin of APD area. In order to calibrate the spectral transmissivity using the dual-laser injection method during the plasma discharge, it is preferred that the spectral channels are separated at the geometric mean of the injected two wavelengths.

10.
Rev Sci Instrum ; 83(10): 10E344, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23127001

ABSTRACT

A prototype YAG laser system for the edge Thomson scattering system in ITER has been newly developed. Performance of the laser amplifier was improved by using flow tubes made of samarium-doped glass; the small signal gain reached 20 at its maximum. As a result, an output energy of 7.66 J at 100 Hz was successfully achieved, and the performance exceeded the target performance (5 J, 100 Hz).

11.
Rev Sci Instrum ; 83(10): 10E346, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23127003

ABSTRACT

This paper focuses on a method for measuring the electron temperature (T(e)) without knowing the transmissivity using Thomson scattering diagnostic with a double-pass scattering system. Application of this method for measuring the anisotropic T(e), i.e., the T(e) in the directions parallel (T(eparallel)) and perpendicular (T(eperpendicular)) to the magnetic field, is proposed. Simulations based on the designed parameters for a JT-60SA indicate the feasibility of the measurements except in certain T(e) ranges, e.g., T(eparallel) ~ 3.5T(eperpendicular) at 120° of the scattering angle.

12.
Rev Sci Instrum ; 83(2): 023507, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380091

ABSTRACT

This paper presents an experimental demonstration to determine electron temperature (T(e)) with unknown spectral sensitivity (transmissivity) in a Thomson scattering system. In this method, a double-pass scattering configuration is used and the scattered lights from each pass (with different scattering angles) are measured separately. T(e) can be determined from the ratio of the signal intensities without knowing a real chromatic dependence in the sensitivity. Note that the wavelength range for each spectral channel must be known. This method was applied to the TST-2 Thomson scattering system. As a result, T(e) measured from the ratio (T(e,r)) and T(e) measured from a standard method (T(e,s)) showed a good agreement with <∣T(e,r) - T(e,s)∣∕T(e,s)> = 7.3%.

13.
Rev Sci Instrum ; 81(10): 10D539, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033891

ABSTRACT

This paper presents designs of collection optics for a JT-60SA Thomson scattering system. By using tangential (to the toroidal direction) YAG laser injection, three collection optics without strong chromatic aberration generated by the wide viewing angle and small design volume were found to measure almost all the radial space. For edge plasma measurements, the authors optimized the channel number and wavelength ranges of band-pass filters in a polychromator to reduce the relative error in T(e) by considering all spatial channels and a double-pass laser system with different geometric parameters.

14.
Rev Sci Instrum ; 81(10): 10D541, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033893

ABSTRACT

Neutron and gamma-ray irradiation complicates the design of the edge Thomson scattering (TS) system in ITER. The TS light is relayed through the relaying optics with labyrinth and fiber coupling optics. Electron density of 2×10(19) m(-3) is sufficient to measure T(e) and n(e) within a 10% and 5% margin of error, respectively, with a spatial resolution of 5 mm. This system can cover from 0.85 to 1 of the normalized minor radius. The time resolution is 10 ms, which is determined by the repetition rate of the laser device. A super-Gaussian is the ideal laser profile for the laser injection optics to avoid a breakdown of the filling gas used in density calibration through Raman scattering.

15.
Rev Sci Instrum ; 79(10): 10E704, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044522

ABSTRACT

Polarization interferometers have some potential efficiency advantages for imaging Thomson scattering spectral analysis. In this article we present a number of designs for high-efficiency imaging polarization interferometers for Thomson scattering spectral analysis. The use of high-efficiency crystal polarizing beamsplitters (both displacement and angle) results in low-loss complementary passbands (no edge losses), simple imaging systems, and wide field of view. The efficiency and relative merits of both multiple-filter and dispersive-type configurations are being assessed before installation on the JT-60U ruby-laser Thomson scattering system. Light is transferred from the viewing port via a linear array of optical fiber bundles which will be imaged through the interferometer onto the photocathode of an intensified charge coupled device camera. Because of the broadband nature of the Thomson light, the optical delays required to Fourier analyze the spectrum are quite small. This leads to compact multicolor or dispersive systems based on combinations of Wollaston and Savart splitters and traditional waveplates.

16.
Phys Rev Lett ; 95(7): 075001, 2005 Aug 12.
Article in English | MEDLINE | ID: mdl-16196788

ABSTRACT

It is found that no current is driven in a central region of a tokamak plasma once the central current density becomes nearly zero ("current hole"), in spite of high electric conductivity, at the current drive by a toroidal electric field and a radio-frequency wave in experiments on the JT-60U tokamak. This is a new, stiff, self-organized structure of a magnetic field in an axisymmetric toroidal plasma.

17.
Phys Rev Lett ; 89(6): 065001, 2002 Aug 05.
Article in English | MEDLINE | ID: mdl-12190589

ABSTRACT

Evolution of the lower-hybrid(LH)-driven current profile was measured during the formation of an internal transport barrier (ITB) in a reversed magnetic shear discharge. As the ITB developed, the initially centrally peaked LH-driven current profile gradually turned hollow and was sometimes accompanied by an off-axis peak in the electron temperature profile. These observations indicate the concentration of LH power deposition to the ITB for this case as a result of nonlinear coupling between the LH waves and the target plasma.

18.
Phys Rev Lett ; 87(24): 245001, 2001 Dec 10.
Article in English | MEDLINE | ID: mdl-11736508

ABSTRACT

A high confinement equilibrium with nearly zero toroidal current in the central region (a "current hole") has been observed for the first time to persist stably for several seconds in the JT-60U tokamak. This observation indicates the possibility of stable tokamak operation without central toroidal current; the central current has previously been believed to be necessary in tokamaks. The radius of the current hole extended up to 40% of the plasma minor radius. It was observed that the current hole was formed by the increase of the off-axis noninductive current.

19.
J Biol Chem ; 276(49): 46260-7, 2001 Dec 07.
Article in English | MEDLINE | ID: mdl-11551955

ABSTRACT

Prostacyclin (PGI(2)) plays important roles in hemostasis both as a vasodilator and an endogenous inhibitor of platelet aggregation. PGI(2) functions in these roles through a specific IP receptor, a G protein-coupled receptor linked to G(s) and increases in cAMP. Here, we report that intracellular prostacyclin formed by expressing prostacyclin synthase in human embryonic kidney 293 cells promotes apoptosis by activating endogenous peroxisome proliferator-activated receptor delta (PPAR delta). In contrast, treatment of cells with extracellular prostacyclin or dibutyryl cAMP actually reduced apoptosis. On the contrary, treatment of the cells with RpcAMP (adenosine 3',5'-cyclic monophosphothioate, Rp-isomer), an antagonist of cAMP, enhanced prostacyclin-mediated apoptosis. The expression of an L431A/G434A mutant of PPAR delta completely blocked prostacyclin-mediated PPAR delta activation and apoptosis. These observations indicate that prostacyclin can act through endogenous PPAR delta as a second signaling pathway that controls cell fate.


Subject(s)
Apoptosis/physiology , Epoprostenol/physiology , Receptors, Cytoplasmic and Nuclear/physiology , Transcription Factors/physiology , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Cytochrome P-450 Enzyme System/metabolism , DNA Primers , Humans , Intramolecular Oxidoreductases/metabolism , Molecular Sequence Data , Sequence Homology, Amino Acid
20.
Phys Rev Lett ; 87(8): 085001, 2001 Aug 20.
Article in English | MEDLINE | ID: mdl-11497948

ABSTRACT

A quasisteady reversed shear plasma with a large bootstrap current fraction ( approximately 80%) has been obtained for the first time in the JT-60U tokamak. The shrinkage of reversed shear region was suppressed by the bootstrap current peaked at the internal transport barrier (ITB) layer and the ITBs at a large radius were sustained, which, by combination with an H-mode edge pedestal, resulted in a high confinement or 2.2 times the H-mode scaling for 6 times energy confinement time or 2.7 s. Furthermore, a full noninductive current drive was obtained by the bootstrap current and the beam driven current.

SELECTION OF CITATIONS
SEARCH DETAIL
...