Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(19): 5683-5689, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38661679

ABSTRACT

We used a surface acoustic wave (SAW) cavity resonator to study the coupling of acoustic magnons in a synthetic antiferromagnet (SAF) and phonons carried by SAWs. The SAF is composed of a CoFeB/Ru/CoFeB trilayer, and the scattering matrix of the SAW resonator is studied to assess the coupling. We find that the spectral line width of the SAW resonator is modulated when the frequency of the excited magnons approaches the SAW resonance frequency. Such a change in the spectral linewidth can be well reproduced using macrospin-like model calculations. From the model analyses, we estimate the magnon-phonon coupling strength to be ∼9.9 MHz at a SAW resonance frequency of 1.8 GHz: the corresponding magnomechanical cooperativity is ∼0.66. As the spectral shape hardly changes in a CoFeB single-layer reference sample, these results show that SAF provides an ideal platform to study magnon-phonon coupling in an SAW cavity resonator.

2.
Nano Lett ; 24(18): 5570-5577, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38634512

ABSTRACT

A coupled ring-waveguide structure is at the core of bosonic wave-based information processing systems, enabling advanced wave manipulations such as filtering, routing, and multiplexing. However, its miniaturization is challenging due to momentum conservation issues in rings with larger curvature that induce significant backscattering and radiation leakage and hampering stable operation. Here, we address it by taking an alternative approach of using topological technology in wavelength-scale and microwave ring-waveguide coupled systems built in nanoengineered phononic crystals. Our approach, which leverages pseudospin conservation in valley topological systems, eliminates phonon backscattering and achieves directional evanescent coupling. The resultant hypersonic waves in the tiny ring exhibit robust transport and resonant circulation. Furthermore, the ring-waveguide hybridization enables critical coupling, where valley-dependent ring-waveguide interference blocks the transmission. Our findings reveal the capability of topological phenomena for managing ultrahigh-frequency phonons in nano/microscale structures and pave the way for advanced phononic circuits in classical and quantum signal processing applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...