Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 124(14): 2747-2759, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32192343

ABSTRACT

We investigated experimentally whether a short peptide, PvLEA-22, which consists of two tandem repeats of an 11-mer motif of Group 3 late embryogenesis abundant proteins, has a chaperone-like function for denatured proteins. Lysozyme was selected as a target protein. Turbidity measurements indicated that the peptide suppresses the heat-induced aggregation of lysozyme when added at a molar ratio of PvLEA-22/lysozyme >40. Circular dichroism and differential scanning calorimetry measurements confirmed that the lysozyme was denatured on heating but spontaneously refolded on subsequent cooling in the presence of the peptide. As a result, up to 80% of the native catalytic activity of lysozyme was preserved. Similar chaperone-like activity was also observed for a peptide with the same amino acid composition as PvLEA-22 but whose sequence is scrambled. To elucidate the underlying mechanism of the chaperone function of these peptides, we performed coarse-grained molecular dynamics simulations. This revealed that a denatured lysozyme molecule is shielded by several peptide molecules in aqueous solution, which acts as a physical barrier, reducing the opportunities for collision between denatured proteins. An important finding was that a peptide bound to the denatured protein is very rapidly replaced by another; due to such rapid exchange, peptide-protein contact time is very short, that is, on the order of ∼200 ns. Therefore, the peptide does not constrain the behavior of the denatured protein, which can refold freely.


Subject(s)
Hot Temperature , Muramidase , Circular Dichroism , Peptides , Protein Denaturation , Protein Folding
2.
Biochem Biophys Rep ; 17: 27-31, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30519646

ABSTRACT

We tested whether a short model peptide derived from a group 3 late embryogenesis abundant (G3LEA) protein is able to maintain the fluorescence activity of a red fluorescent protein, mKate2, in the dry state. The fluorescence intensity of mKate2 alone decreased gradually through repeated dehydration-rehydration treatments. However, in the presence of the LEA model peptide, the peak intensity was maintained almost perfectly during such stress treatments, which implies that the three dimensional structure of the active site of mKate2 was protected even under severe desiccation conditions. For comparison, similar experiments were performed with other additives such as a native G3LEA protein, trehalose and BSA, all of whose protective abilities were lower than that of the LEA model peptide.

3.
Planta ; 242(2): 451-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25822798

ABSTRACT

MAIN CONCLUSION: In the anhydrobiotic midge Polypedilum vanderplanki , LEA family proteins are likely to play distinct temporal and spatial roles in the larvae throughout the process of desiccation and rehydration. The larvae of the anhydrobiotic midge, P. vanderplanki, which can tolerate almost complete desiccation, accumulate late embryogenesis abundant (LEA) proteins in response to drying. Using complete genome data of the midge, we have identified 27 PvLea1-like genes based on the similarity to previously characterized PvLea1 gene belonging to group 3 LEA proteins. Generally, group 3 LEA proteins are characterized by several repetitions of an 11-mer motif. However, some PvLea genes lack the canonical motif in their sequences. We performed the detailed characterization of all 27 PvLea genes in terms of biochemical and biophysical properties and conserved motifs. The motif analysis among their amino acid sequences revealed that all 27 PvLEA proteins have at least one of two types of motifs (motif 1: G AKDTTKEKLGE AKDATAEKLG or motif 2: KD ILExAKDKLxD AKDAVKEKL), indicating the presence of at least two repeated 11-mer LEA motifs. Most of PvLEA proteins were localized to the cytosol. We also performed quantitative real-time PCR of all 27 PvLea genes in detail during the process of desiccation and rehydration. The expression of these genes was upregulated at the beginning of dehydration, the latter phase of the desiccation process and on rehydration process. These data suggested that each LEA protein is likely to play distinct temporal and spatial roles in the larvae throughout the process of desiccation and rehydration.


Subject(s)
Chironomidae/genetics , Gene Expression Profiling , Gene Expression Regulation , Animals , Desiccation , Gene Duplication , Phylogeny , Protein Transport , Proteins/genetics , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Subcellular Fractions/metabolism
4.
Biochem Biophys Res Commun ; 454(4): 588-93, 2014 11 28.
Article in English | MEDLINE | ID: mdl-25450698

ABSTRACT

Late embryogenesis abundant (LEA) proteins, which accumulate to high levels in seeds during late maturation, are associated with desiccation tolerance. A member of the LEA protein family was found in cultured cells of the liverwort Marchantia polymorpha; preculture treatment of these cells with 0.5M sucrose medium led to their acquisition of desiccation tolerance. We characterized this preculture-induced LEA protein, designated as MpLEA1. MpLEA1 is predominantly hydrophilic with a few hydrophobic residues that may represent its putative signal peptide. The protein also contains a putative endoplasmic reticulum (ER) retention sequence, HEEL, at the C-terminus. Microscopic observations indicated that GFP-fused MpLEA1 was mainly localized in the ER. The recombinant protein MpLEA1 is intrinsically disordered in solution. On drying, MpLEA1 shifted predominantly toward α-helices from random coils. Such changes in conformation are a typical feature of the group 3 LEA proteins. Recombinant MpLEA1 prevented the aggregation of α-casein during desiccation-rehydration events, suggesting that MpLEA1 exerts anti-aggregation activity against desiccation-sensitive proteins by functioning as a "molecular shield". Moreover, the anti-aggregation activity of MpLEA1 was ten times greater than that of BSA or insect LEA proteins, which are known to prevent aggregation on drying. Here, we show that an ER-localized LEA protein, MpLEA1, possesses biochemical and structural features specific to group 3 LEA proteins.


Subject(s)
Endoplasmic Reticulum/metabolism , Marchantia/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Seeds/cytology , Seeds/metabolism
5.
Nat Commun ; 5: 4784, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25216354

ABSTRACT

Anhydrobiosis represents an extreme example of tolerance adaptation to water loss, where an organism can survive in an ametabolic state until water returns. Here we report the first comparative analysis examining the genomic background of extreme desiccation tolerance, which is exclusively found in larvae of the only anhydrobiotic insect, Polypedilum vanderplanki. We compare the genomes of P. vanderplanki and a congeneric desiccation-sensitive midge P. nubifer. We determine that the genome of the anhydrobiotic species specifically contains clusters of multi-copy genes with products that act as molecular shields. In addition, the genome possesses several groups of genes with high similarity to known protective proteins. However, these genes are located in distinct paralogous clusters in the genome apart from the classical orthologues of the corresponding genes shared by both chironomids and other insects. The transcripts of these clustered paralogues contribute to a large majority of the mRNA pool in the desiccating larvae and most likely define successful anhydrobiosis. Comparison of expression patterns of orthologues between two chironomid species provides evidence for the existence of desiccation-specific gene expression systems in P. vanderplanki.


Subject(s)
Chironomidae/genetics , Chromosomes, Insect/chemistry , Genome, Insect , Insect Proteins/genetics , Phylogeny , Animals , Biological Evolution , Chironomidae/classification , Chironomidae/growth & development , Desiccation , Gene Expression , Genome Size , Larva , Methyltransferases/genetics , Sequence Analysis, DNA , Stress, Physiological , Thioredoxins/genetics , Water/metabolism
6.
Insect Biochem Mol Biol ; 43(11): 1055-67, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23978448

ABSTRACT

LEA proteins are found in anhydrobiotes and are thought to be associated with the acquisition of desiccation tolerance. The sleeping chironomid Polypedilum vanderplanki, which can survive in an almost completely desiccated state throughout the larval stage, accumulates LEA proteins in response to desiccation and high salinity conditions. However, the biochemical functions of these proteins remain unclear. Here, we report the characterization of a novel chironomid LEA protein, PvLEA4, which is the most highly accumulated LEA protein in desiccated larvae. Cytoplasmic-soluble PvLEA4 showed many typical characteristics of group 3 LEA proteins (G3LEAs), such as desiccation-inducible accumulation, high hydrophilicity, folding into α-helices on drying, and the ability to reduce aggregation of dehydration-sensitive proteins. This last property of LEA proteins has been termed molecular shield function. To further investigate the molecular shield activity of PvLEA4, we introduced two distinct methods, turbidity measurement and dynamic light scattering (DLS). Turbidity measurements demonstrated that both PvLEA4, and BSA as a positive control, reduced aggregation in α-casein subjected to desiccation and rehydration. However, DLS experiments showed that a small amount of BSA relative to α-casein increased aggregate particle size, whereas PvLEA4 decreased particle size in a dose-dependent manner. Trehalose, which is the main heamolymph sugar in most insects but also a protectant as a chemical chaperone in the sleeping chironomid, has less effect on the limitation of aggregate formation. This analysis suggests that molecular shield proteins function by limiting the growth of protein aggregates during drying and that PvLEA4 counteracts protein aggregation in the desiccation-tolerant larvae of the sleeping chironomid.


Subject(s)
Chironomidae/metabolism , Insect Proteins/metabolism , Amino Acid Sequence , Animals , Chironomidae/chemistry , Chironomidae/genetics , Dehydration , Hydrophobic and Hydrophilic Interactions , Insect Proteins/chemistry , Insect Proteins/genetics , Larva/chemistry , Larva/genetics , Larva/metabolism , Molecular Sequence Data , Protein Structure, Secondary
7.
Biochim Biophys Acta ; 1824(7): 891-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22579671

ABSTRACT

Group 3 late embryogenesis abundant (G3LEA) proteins have amino acid sequences with characteristic 11-mer motifs and are known to reduce aggregation of proteins during dehydration. Previously, we clarified the structural and thermodynamic properties of the 11-mer repeating units in G3LEA proteins using synthetic peptides composed of two or four tandem repeats originating from an insect (Polypedilum vanderplanki), nematodes and plants. The purpose of the present study is to test the utility of such 22-mer peptides as protective reagents for aggregation-prone proteins. For lysozyme, desiccation-induced aggregation was abrogated by low molar ratios of a 22-mer peptide, PvLEA-22, derived from a P. vanderplanki G3LEA protein sequence. However, an unexpected behavior was noted for the milk protein, α-casein. On drying, the resultant aggregation was significantly suppressed in the presence of PvLEA-22 with its molar ratios>25 relative to α-casein. However, when the molar ratio was <10, aggregation occurred on addition of PvLEA-22 to aqueous solutions of α-casein. Other peptides derived from nematode, plant and randomized G3LEA protein sequences gave similar results. Such an anomalous solubility change in α-casein was shown to be due to a pH shift to ca. 4, a value nearly equal to the isoelectric point (pI) of α-casein, when any of the 22-mer peptides was mixed. These results demonstrate that synthetic peptides derived from G3LEA protein sequences can reduce protein aggregation caused both by desiccation and, at high molar ratios, also by pH effects, and therefore have potential as stabilization reagents.


Subject(s)
Bacterial Proteins/chemistry , Caseins/chemistry , Helminth Proteins/chemistry , Insect Proteins/chemistry , Muramidase/chemistry , Peptides/chemical synthesis , Plant Proteins/chemistry , Animals , Chemical Precipitation , Chironomidae/chemistry , Comamonadaceae/chemistry , Desiccation , Hydrogen-Ion Concentration , Kinetics , Nematoda/chemistry , Plants/chemistry , Protein Structure, Secondary , Solid-Phase Synthesis Techniques , Thermodynamics
8.
Planta ; 231(4): 965-76, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20101410

ABSTRACT

Some cultured plant cells are able to acquire tolerance to various stresses when they are cultured under suitably controlled conditions. Induction of a high level of desiccation tolerance in suspension-cultured cells of the liverwort Marchantia polymorpha was examined for studying the mechanisms of desiccation tolerance and vitrification at the cellular level. Desiccation tolerance level of cells was very low and the survival rate was less than 10% after exposure to drying below 0.1 g H(2)O g(-1) dry weight (DW). Preculture treatment in 0.5 M sucrose medium was the most effective method for inducing a high level of desiccation tolerance in cells and the survival rate was 87% even after being desiccated to below 0.1 g H(2)O g(-1) DW. Preculture treatment caused alteration of cell structures and accumulation of a large amount of sucrose and newly synthesized proteins in cells. Abundant sucrose and preculture-induced proteins were necessary for full development of desiccation tolerance in the cells. When water content decreased to below 0.1 g H(2)O g(-1) DW, desiccation-tolerant cells that had been precultured were vitrified above 0 degrees C and maintained stable viability. We have succeeded in the induction of desiccation tolerance that allows formation of intracellular glass with cell viability at ambient temperatures by controlling culture conditions, and our results suggest that suspension-cultured cells of M. polymorpha are useful for studying cellular mechanisms for the development of desiccation tolerance and the stabilization of vitrified cells.


Subject(s)
Cell Culture Techniques/methods , Desiccation , Marchantia/metabolism , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation, Plant/physiology , Marchantia/drug effects , Marchantia/physiology , Marchantia/ultrastructure , Microscopy, Electron, Transmission , Sucrose/metabolism , Sucrose/pharmacology , Temperature
9.
J Pharmacol Sci ; 95(1): 135-8, 2004 May.
Article in English | MEDLINE | ID: mdl-15153661

ABSTRACT

The effects of (1R)-1-benzo[b]thiophen-5-yl-2-[2-(diethylamino)ethoxy]ethan-1-ol hydrochloride (T-588), a cognitive enhancer, on sodium nitroprusside (SNP)-induced cytotoxicity were examined in cultured rat astrocytes. Treatment with 100 microM SNP for 72 h decreased cell viability and mitochondrial function assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenil tetrazolium bromide (MTT) reduction activity, mitochondrial transmembrane potential, and intracellular ATP level. T-588 at 100 microM prevented SNP-induced mitochondrial dysfunction and cell injury. Furthermore, T-588 increased MTT reduction activity without affecting cell proliferation in astrocytes. These results suggest that T-588 has a protective effect against SNP-mediated toxicity via improvement of mitochondrial dysfunction in astrocytes.


Subject(s)
Astrocytes/drug effects , Diethylamines/pharmacology , Neuroprotective Agents/pharmacology , Nitroprusside/toxicity , Nootropic Agents/pharmacology , Thiophenes/pharmacology , Animals , Astrocytes/metabolism , Cells, Cultured , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...