Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 99: 129616, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38216097

ABSTRACT

Fischer's glycoside synthesis was applied to linker precursor alcohols of two different lengths having appropriate alkane chains to obtain the corresponding α-glycoside and it was found to be applicable with moderate yields. Water-soluble glycomonomers were systematically prepared from N-acetyl-d-glucosamine (GlcNAc) by introducing two kinds of alcohols having different methylene lengths. Typical radical polymerizations of the glycomonomers with acrylamide as a modulator for control of the distance between carbohydrate residues in water in the presence of ammonium persulfate (APS)-N,N,N',N'-tetramethylethylenediamine (TEMED) gave a series of glycopolymers with various α-glycoside-type GlcNAc residue densities. Fluorometric analysis of the interaction of wheat germ agglutinin (WGA) with the glycopolymers was performed and the results showed unique binding specificities based on structural differences.


Subject(s)
Lectins , Sugars , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Carbohydrates/chemistry , Glycosides , Lectins/metabolism , Polymerization , Polymers/chemistry , Water
2.
ACS Omega ; 8(40): 37329-37340, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37841120

ABSTRACT

Glycomonomers having N-glycosidic linkages were prepared from a known glycosyl amine, N-acetyl-d-glucosamine (GlcNAc). Radical polymerization of the glycomonomers gave a series of glycopolymers displaying various sugar densities, which were models of the core structure of Asn-linked-type glycoproteins. In addition, fluorometric analyses of wheat germ agglutinin (WGA) against the glycopolymers were carried out, and the results showed unique binding specificities on the basis of flexibility of sugar moieties.

3.
ACS Omega ; 8(40): 37451-37460, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37841131

ABSTRACT

A known tetraphenyl porphyrin (TPP) having an amino functional group [5-(4-aminophenyl)-10,15,20-(triphenyl)porphyrin] was converted into the corresponding monomer by means of condensation with acryloyl chloride. Simple radical polymerization of the porphyrin monomer and a glycosyl monomer in the presence of acrylamide as a regulator monomer in order to avoid steric interference gave a water-soluble glycopolymer bearing porphyrin moieties. Spectroscopic analyses suggested incorporation of porphyrin moieties in the glycopolymer. The physical properties of the water-soluble glycopolymer bearing porphyrin moieties were examined in aqueous media, and the results also indicated the incorporation of TPP moieties in the polymer. Uptake of the polymer into HeLa cells was observed, and the cytotoxicity of the polymer was confirmed by microscopic analyses. The glycopolymer bearing porphyrin moieties is promising not only for photodynamic therapy but also as an anti-cancer reagent.

4.
Bioorg Med Chem ; 92: 117422, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37523791

ABSTRACT

Polyacrylamides with various compositions of serine, aspartic acid, and histidine, which are the amino acids involved in the catalytic triad of natural serine protease chymotrypsin, were synthesized and their protein cleavage activity was investigated. SDS-PAGE analysis showed that some of the synthesized ternary copolymers showed cleavage activity against bovine and human serum albumins. Polyacrylamides incorporating a single type of amino acid were also able to cleave the protein substrates. These homopolymers exhibited unique cleavage profiles and pH and temperature sensitivities that differed from those of α-chymotrypsin. The results indicate the potential of polymers functionalized with amino acids as proteolytic artificial enzymes.


Subject(s)
Amino Acids , Serum Albumin, Human , Animals , Cattle , Humans , Amino Acids/pharmacology , Amino Acids/chemistry , Amino Acid Sequence , Proteins , Peptide Hydrolases , Substrate Specificity
5.
Polymers (Basel) ; 15(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36850281

ABSTRACT

A polymerizable alcohol having 9 PEG repeats was prepared in order to mimic an oligosaccharide moiety. Sialyl α(2→3) lactose, which is known as a sugar moiety of GM3 ganglioside, was also prepared, and the polymerizable alcohol was condensed with the sialyl α(2→3) lactose derivative to afford the desired glycomonomer, which was further polymerized with or without acrylamide to give water-soluble glycopolymers. The glycopolymers had higher affinities than those of glycopolymers having sialyl lactose moieties with shorter aglycon moieties.

6.
Bioorg Med Chem ; 81: 117209, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36787684

ABSTRACT

Glycopolymers having sialyl α2-3 lactose moieties via longer spacer arms were systematically prepared from the corresponding glycomonomers. Radical polymerization of glycomonomers gave a series of glycopolymers displaying various sugar densities. Fluorometric analyses of wheat germ agglutinin (WGA) against the glycopolymers were conducted and the results showed unique binding specificities on the basis of sugar densities.


Subject(s)
Lactose , Polymers , Sugars , Sialic Acids
7.
ACS Omega ; 7(38): 34554-34562, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36188280

ABSTRACT

To verify the potencies of dibromopyridazinediones with mono- and double-biotin groups, the functions as cysteine-selective biotinylation reagents were evaluated through conjugation with a goat anti-mouse IgG Fab fragment as a functional protein model. The starting Fab was reduced with tris(2-carboxyethyl)phosphine to cleave the disulfide bond and then treated with the reagents. These reagents simultaneously introduced biotin groups into the reduced Fab and re-bridged the disulfide moiety. Furthermore, we demonstrated that the biotin-labeled Fabs were reactive to an antigen and streptavidin.

8.
Bioorg Chem ; 128: 106061, 2022 11.
Article in English | MEDLINE | ID: mdl-35917748

ABSTRACT

We synthesized N-acetylglucosamine-terminated hexavalent carbosilane dendrimers and investigated their binding to wheat germ agglutinin (WGA). The glycodendrimers were prepared by the conjugation of 3-mercaptopropyl, 4-mercaptobutyl, or 5­mercaptopentyl glycosides to maleimide-terminated hexavalent carbosilane dendrimers. Titration of WGA with the glycodendrimers yielded quenching of tryptophan fluorescence. All of the glycodendrimers exhibited high affinity with nanomolar dissociation constants (KD values). The best dendrimers were 1a and 1b with KD values of 6.5 ± 1.7 and 5.3 ± 1.7 nM, respectively. The magnitude of fluorescence quenching increased with decrease in the length of the thioalkyl spacer. Maleimide-pendant carbosilane dendrimers provide ready access to multivalent ligands with high-affinity potential.


Subject(s)
Dendrimers , Glycosides , Ligands , Maleimides , Sulfhydryl Compounds , Wheat Germ Agglutinins
9.
Anal Chim Acta ; 1213: 339926, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35641063

ABSTRACT

Quick and sensitive virus detection methods have been developed using sub-picoliter microwells. One method uses an aggregation-induced emission (AIE) reagent, and the other uses an enzymatic reaction supported with immunomagnetic beads at a high concentration of 108 particles/mL. Examination of influenza A virus detection using the AIE reagent exhibited a detection limit of 3 × 105 copies/mL, which was achievable within 1 min of the total measurement time. The high-concentration immunomagnetic beads method exhibited a detection limit as low as 1 × 102 copies/mL. The developed methods are effective and practical tools for ultrafast and ultrasensitive virus detection.


Subject(s)
Influenza A virus , Orthomyxoviridae , Biological Assay , Immunomagnetic Separation
10.
Bioorg Med Chem Lett ; 52: 128389, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34600036

ABSTRACT

A water-soluble glycomonomer having a sialyl α2 â†’ 3 lactose (SLac) moiety was prepared from a known imidate derivative of the SLac and an acrylamide alcohol by means of Schmidt's protocol followed by transesterification. Polymerization of the monomer proceeded in water as the solvent in the presence of ammonium persulfate (APS)-tetramethylethylenediamine (TEMED). Since acryl amide (AAm) was used as a regulator for the arrangement of sugar density, three kinds of glycopolymers having different sugar densities were obtained. Infection inhibition assays of mumps virus (MuV) for Vero cells using the glycopolymers were performed, and the results showed that a glycopolymer having a low sugar density has the highest inhibitory potency. In comparison to sialyl Lewis X (SLeX) as the strongest inhibitor in a previous study, SLac polymer with the low sugar density showed ten-times stronger inhibitory potency than that of SLex. This finding suggested that multivalent conversion of the monomeric SLac with appropriate spatial arrangement are able to effectively inhibit the interaction between the attachment glycoprotein of MuV and glycan receptors on Vero cells.


Subject(s)
Antiviral Agents/pharmacology , Lactose/pharmacology , Mumps virus/drug effects , Polymers/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Chlorocebus aethiops , Dose-Response Relationship, Drug , Lactose/chemistry , Molecular Structure , Polymers/chemical synthesis , Polymers/chemistry , Structure-Activity Relationship , Vero Cells
11.
Environ Sci Pollut Res Int ; 28(28): 37562-37569, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33715131

ABSTRACT

In this study, we investigate the release of melanoidin-like product (MLP) from hybrid silica xerogels to control the quantity of MLP in the medium for lead phytoextraction. In the preparation of the hybrid organic-inorganic xerogels with MLP, tetraethoxysilane (TEOS), methyltriethoxysilane (MTES), propyltriethoxysilane (PTES), and 3-aminopropyltriethoxysilane (APTES) were used as precursors. The experimental results suggest that the release of MLP can be easily controlled by partially substituting TEOS with the organosilanes. The addition of the organosilanes lowered the release rate of MLP in the following order of xerogels: TEOS, MTES/TEOS, PTES/TEOS, and APTES/TEOS. Furthermore, a novel phytoextraction of lead through the Indian mustard was conducted using the MLP-doped TEOS xerogel. Results show that the addition of TEOS xerogel did not have any influence on the growth of the mustard, whereas the lead uptake significantly increased in a nutrition medium with 1-mM Pb(NO3)2. In conclusion, the beneficial effect of the MLP-doped TEOS xerogel on lead phytoextraction was confirmed.


Subject(s)
Mustard Plant , Silicon Dioxide , Delayed-Action Preparations , Gels , Lead , Molasses , Polymers
12.
Bioorg Med Chem Lett ; 30(8): 127024, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32098722

ABSTRACT

A convenient assembly of fluorogenic glycopolymers having various polymer compositions was accomplished from the corresponding glycomonomer and dansyl monomer by means of radical polymerization, and the water-soluble glycopolymers gave typical fluorescence spectroscopic profiles due to the dansyl moieties on the glycopolymer in aqueous media. Biological evaluation of the polymer against wheat germ agglutinin (WGA) was accomplished on the basis of fluorescence changes due to tryptophan residues on WGA, and the affinities between the glycopolymers and WGA were estimated to be 4.7 × 105 to 9.3 × 105 M-1. In order to apply the fluorogenic glycopolymers for further biological measurements, efficient resonance energy transfer from tryptophan moieties on WGA to dansyl moieties on the fluorogenic glycopolymers was examined. FRET profiles of both fluorophores were similar compared to the binding profiles on the basis of fluorescence changes of tryptophan residues. This approach is applicable for the determination of an affinity constant between a carbohydrate and a lectin in which no fluorophore exists near the binding site.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescent Dyes/pharmacology , Lectins/pharmacology , Polymers/pharmacology , Wheat Germ Agglutinins/drug effects , Dose-Response Relationship, Drug , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Lectins/chemistry , Molecular Structure , Polymers/chemical synthesis , Polymers/chemistry , Spectrometry, Fluorescence , Structure-Activity Relationship , Tryptophan/drug effects
13.
Bioorg Med Chem Lett ; 30(2): 126883, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31859155

ABSTRACT

Artificial substrates for probing neuraminidase activity are powerful tools for studying the physiological and pathological roles of neuraminidases. Most of the substrates are α-O-linked sialosides involving hydroxyl-containing reporters for visualization, and neuraminidase-catalyzed cleavage of the sialic acid residues directly activates the reporters. However, the use of amine-containing reporters has been avoided because α-N-linked sialosides are marginal substrates for neuraminidases. To expand the applicability of reporters to amine-containing compounds, we have focused on prodrug design. Herein we describe the synthesis and enzymatic study of a model substrate involving 4-nitroaniline as an amine-containing chromogenic reporter. The substrate can respond to neuraminidase from Clostridium perfringens. Neuraminidase-mediated hydrolysis of the sialic acid moiety of the substrate initiates self-immolative elimination of the linker moiety, leading the liberation of yellow-colored reporter 4-nitroaniline. The elimination process involves generation of quinone methide intermediate, which causes to neutralize neuraminidase. The substrate, thus, works as not only a chromogenic substrate but also a suicide inactivator.


Subject(s)
Aniline Compounds/chemistry , Neuraminidase/therapeutic use , Prodrugs
14.
Environ Sci Pollut Res Int ; 26(14): 14483-14493, 2019 May.
Article in English | MEDLINE | ID: mdl-30877534

ABSTRACT

In this study, we effectively suppressed arsenic and cadmium uptake into a plant using magnetic nanoparticle powder (MNP) and fermented bark amendment (FBA) in agar medium. The MNP (which consists of FeO·Fe2O3) quantitatively adsorbed arsenite (As(III)) and the FBA (which mainly consists of bark waste) adsorbed cadmium, regardless of the pH. The properties of MNP and FBA in agar medium were compared based on the amounts of arsenic and cadmium in cultivated radish sprouts. While adding FBA selectively suppressed cadmium uptake by radishes, adding MNP suppressed the uptake of both arsenic and cadmium. Considering that the uptake of analytes was slightly reduced even in agar without any additives, the agar itself might also have contributed to the suppression of analyte uptake into plants. In addition, even when radish sprouts were cultivated in agar containing arsenic and cadmium (100 µg/L each) mixed with 25 g MNP and 1.25 g FBA per 25 mL agar, arsenic and cadmium absorption decreased by 90% and 82%, respectively, versus agar without additives. Furthermore, adding the mixed amendment to agar accelerated the growth of radishes, whereas MNP significantly inhibited radish growth even though it reduced analyte uptake. Our results indicated that mixing inorganic and organic adsorbents could simultaneously inhibit cadmium and arsenic uptake by plants and accelerate plant growth in the cadmium and arsenic-contaminated agar medium.


Subject(s)
Arsenic/metabolism , Cadmium/metabolism , Magnetite Nanoparticles/chemistry , Raphanus/metabolism , Soil Pollutants/metabolism , Adsorption , Agar , Arsenic/analysis , Arsenic/chemistry , Arsenites , Biological Transport , Cadmium/analysis , Cadmium/chemistry , Environmental Restoration and Remediation , Fermentation , Raphanus/growth & development , Soil Pollutants/analysis , Soil Pollutants/chemistry
15.
Molecules ; 23(11)2018 Nov 04.
Article in English | MEDLINE | ID: mdl-30400356

ABSTRACT

CM-Str (4-(Chloromethyl)styrene) was used as a useful starting material for the construction of a series of functional monomers. Substitution of the chlorine to the corresponding azide was performed, and the reduction of the azide proceeded smoothly to afford an aminostyrene, which was used as a common precursor for the preparation of functional monomers. Condensation of the amine with a fluorophore, biotin and carbohydrate was accomplished. Among the monomers, a carbohydrate monomer was polymerized with or without acrylamide as a model polymerization to yield the corresponding water-soluble glycopolymers, and biological evaluations of the glycopolymers for a lectin, and wheat germ agglutinin (WGA), were carried out on the basis of the fluorescence change of tryptophan in the WGA.


Subject(s)
Biosensing Techniques , Polymers/chemistry , Styrene/chemistry , Lectins/chemistry , Spectrometry, Fluorescence
16.
Bioorg Med Chem ; 26(22): 5792-5803, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30420327

ABSTRACT

Synthetic assembly of sugar moieties and amino acids in order to create "sugar-amino acid hybrid polymers" was accomplished by means of simple radical polymerization of carbohydrate monomers having an amino acid-modified polymerizable aglycon. Amines derived from globotriaoside and lactoside as glycoepitopes were condensed with known carbobenzyloxy derivatives, including Z-Gly, Z-l-Ala and Z-ß-Ala, which had appropriate spacer ability and a chiral center to afford fully protected sugar-amino acid hybrid compounds in good yields. After deprotection followed by acryloylation, the water-soluble glycomonomers were polymerized with or without acrylamide in the presence of a radical initiator in water to give corresponding copolymers and homopolymers, which were shown by SEC analysis to have high molecular weights. Evaluation of the biological activities of the glycopolymers against Shiga toxins (Stxs) was carried out, and the results suggested that glycopolymers having highly clustered globotriaosyl residues had high affinity against Stx2 (KD = 2.7∼4.0 µM) even though other glycopolymers did not show any affinity or showed very weak binding affinity. When Stx1 was used for the same assay, all of the glycopolymers having globotriaosyl residues showed high affinity (KD = 0.30∼1.74 µM). Interestingly, couple of glycopolymers having lactosyl moieties had weaker binding affinity against Stx1. In addition, when cytotoxicity assays were carried out for both Stxs, glycopolymers having highly clustered globotriaosyl residues showed higher affinity than that of the copolymers, and only highly clustered-type glycopolymers displayed neutralization potency against Stx2.


Subject(s)
Escherichia coli O157/metabolism , Polymers/pharmacology , Shiga Toxins/antagonists & inhibitors , Amino Acids/chemistry , Amino Acids/pharmacology , Amino Sugars/chemistry , Amino Sugars/pharmacology , Dose-Response Relationship, Drug , Escherichia coli O157/chemistry , Lactose/chemistry , Lactose/pharmacology , Molecular Structure , Polymers/chemical synthesis , Polymers/chemistry , Shiga Toxins/biosynthesis , Structure-Activity Relationship , Trisaccharides/chemistry , Trisaccharides/pharmacology
17.
Protein Pept Lett ; 25(9): 838-852, 2018.
Article in English | MEDLINE | ID: mdl-30129400

ABSTRACT

Bromelain inhibitor, "bromein", is a proteinase-inhibitor specific to the cysteine proteinase bromelain from pineapple stem. In the stem, eight bromein isoforms are known to exist, and each isoform has a short peptide (light chain) and a long one (heavy chain) with five disulfide bonds. The three-dimensional structure of the sixth isoform (bromein-6) is composed of inhibitory and stabilizing domains, and each domain contains a three-stranded antiparallel ß-sheet. The genomic sequence of a bromein precursor encodes three homologous bromein isoform domains, and each isoform domain has a signal peptide, three interchain peptides between the light chain and heavy chain, two interdomain peptides and a propeptide. Interestingly, at the protein level, bromein- 6 appears to share a similar folding and disulfide-bonding connectivity with Bowman-Birk serine proteinase inhibitors and shows weak inhibition toward chymotrypsin and trypsin. However, no significant similarity was found between them at the genomic level. This indicates that they have evolved convergently to possess such a structural similarity. To identify the essential reactive site(s) with bromelain, we investigated the inhibitory activity of 44 kinds of the single/double and insertion/ deletion mutants of bromein-6 towards stem bromelain. As a result, it was shown that both the appropriate positioning and the complete side-chain structure of Leu10 in the light chain are absolutely crucial for the inhibition, with an additional measure of importance for the preceding Pro9. Bromein and stem bromelain coexist in the acidic vacuoles of the stem tissue, and one of the key role of bromein appears to be the regulation of the bromelain activity.


Subject(s)
Ananas/genetics , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/metabolism , Ananas/metabolism , Catalytic Domain , INDEL Mutation , Models, Molecular , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 28(10): 1704-1707, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29691137

ABSTRACT

Bivalent glycoconjugates have a minimal valence with avidity potential on protein-carbohydrate interactions as well as simplicity of chemical structures enabling simple synthesis with low cost. Understanding the way to maximize the affinities of bivalent glycoconjugates is important for the development of cost-effective tools for therapeutic and diagnostic research. However, there has been little discussion about the effects of constraints imposed from ligand scaffolds on the binding abilities. We synthesized three kinds of biantennary N-acetylglucosamine glycosides with different scaffolds using isobutenyl bis(propargyl)ether as a common scaffold precursor. Decoration of the scaffold branches with GlcNAc moieties through copper-catalyzed azide-alkyne cycloaddition and grafting of the alkenyl focal point to another bivalent biotin dendron through thiol-ene and nucleophilic substitution reactions were successfully carried out in an orthogonal manner. The association constants of the ligands against wheat germ agglutinin were determined by a fluorometric titration assay. A bivalent biotin counterpart provided higher affinity than an isobutyl scaffold, whereas an isobutenyl scaffold yielded more enhancement than a bivalent biotin counterpart. The present work suggested that the constraint and steric bulk of ligand scaffolds are possible factors for improving binding properties of glycoconjugates against lectins or proteins.


Subject(s)
Acetylglucosamine/pharmacology , Wheat Germ Agglutinins/antagonists & inhibitors , Acetylglucosamine/chemical synthesis , Acetylglucosamine/chemistry , Dose-Response Relationship, Drug , Ligands , Molecular Structure , Structure-Activity Relationship
19.
Int J Phytoremediation ; 20(6): 552-559, 2018 May 12.
Article in English | MEDLINE | ID: mdl-29688055

ABSTRACT

Previously, it has been suggested that melanoidin-like products (MLP) from sugarcane molasses may accelerate copper phytoextraction. In this study, we evaluated the facilitatory effect of MLP on phytoextraction in a medium including cadmium or lead, the concentrations of which were adjusted around the regulation values of the Soil Contamination Countermeasures Act in Japan. Three Brassica species were tested based on their fast growth, high biomass productivity, and high heavy metal absorption. Both biomass and lead uptake in the nutrient medium with 1 mM lead nitrate were significantly increased by the addition of MLP, and almost all of the lead was accumulated in the root tissue. Therefore, MLP were able both to detoxify lead ions and to improve their bioavailability in Brassica species. In contrast, only these species with MLP or citric acid survived in the nutrient medium with 1 mM cadmium sulfate. The phytoextraction of cadmium using these species was therefore impractical under the Act.


Subject(s)
Brassica , Soil Pollutants/analysis , Biodegradation, Environmental , Cadmium , Japan , Lead , Molasses , Polymers
20.
Bioorg Med Chem Lett ; 27(21): 4844-4848, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28974337

ABSTRACT

Survivin, an inhibitor of the apoptosis protein family, is a potent tumor marker for diagnosis and prognosis. The enzyme-linked immunosorbent assay (ELISA) is one of the methods that has been used for detection of survivin. However, ELISA has several disadvantages caused by the use of conventional antibodies, and we have therefore been trying to develop a novel ELISA system using camelid single-domain antibodies (VHHs) as advantageous replacements. Here we report a supplemental approach to improve the VHH-polyclonal antibody sandwich ELISA for survivin detection. Iodoacetyl-functionalized pullulan was synthesized, and its thiol reactivity was characterized by a model reaction with l-cysteine. The thiophilic pullulan was applied to an immunoassay asan additive upon coating of standard assay plates with an anti-survivin VHH fusion protein with C-terminal cysteine. The results showed that the mole ratio of the additive to VHH had a significant effect on the consequent response. Mole ratios of 0.07, 0.7, and 7 led to 90% lower, 15% higher, and 69% lower responses, respectively, than the response of a positive control in which no additive was used. The background levels observed in any additive conditions were as low as that of a negative control lacking both VHH and the additive. These results indicate the applicability of the thiol-reactive pullulan as a response enhancer to VHH-based ELISA.


Subject(s)
Antibodies/immunology , Enzyme-Linked Immunosorbent Assay , Glucans/chemistry , Inhibitor of Apoptosis Proteins/analysis , Single-Domain Antibodies/immunology , Animals , Antibodies/chemistry , Cysteine/chemistry , Humans , Iodoacetic Acid/chemistry , Single-Domain Antibodies/chemistry , Survivin
SELECTION OF CITATIONS
SEARCH DETAIL
...