Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
ACS Appl Mater Interfaces ; 10(16): 13342-13349, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29595948

ABSTRACT

The ability to observe lethal anthrax exotoxins translocating through size-constricting nanopores in vitro, combined with detailed sequence and structural data, has aided in elucidated mechanisms of exotoxin cell entry and toxicity. However, due to limited observations of anthrax exotoxins translocating through protective antigen nanopores in vitro and the instability of protective antigen-functionalized suspended lipid bilayers, questions remain regarding the native mechanisms of cell entry. Nanoporous hydrogel membranes offer a robust tool for studying protein translocation with ensemble measurements that complement conventional single-molecule translocation measurements. Here, we utilize nanoporous hydrogel membranes to assess the translocation of full-length anthrax lethal and edema factors through nanopores similar in diameter to protective antigen translocons. We find that, relative to globular serum and other proteins that do not translocate natively through nanopores, anthrax exotoxins demonstrate significantly reduced barriers to pore entry. Computed free-energy barriers to the unfolding of proteins and the dissociation of macromolecular complexes are generally found to coincide with translocation. Finally, a nanopore-blocking strategy is developed that utilizes nonspecific synthetic peptide constructs and effectively prevents LF translocation within the nanoporous hydrogel.


Subject(s)
Nanopores , Anthrax , Antigens, Bacterial , Exotoxins , Humans , Hydrogels , Lipid Bilayers
2.
PLoS One ; 11(5): e0156341, 2016.
Article in English | MEDLINE | ID: mdl-27227828

ABSTRACT

Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allows several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 µm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young's modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. We anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.


Subject(s)
Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Physiological Phenomena , Endothelium, Vascular/cytology , Microfluidic Analytical Techniques/instrumentation , Neurons/cytology , Animals , Biomimetics , Cells, Cultured , Equipment Design , Humans , Microfluidic Analytical Techniques/methods , Rats , Tissue Engineering
3.
J Virol ; 90(16): 7084-7097, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27226375

ABSTRACT

UNLABELLED: Rift Valley fever virus (RVFV) is an arbovirus within the Bunyaviridae family capable of causing serious morbidity and mortality in humans and livestock. To identify host factors involved in bunyavirus replication, we employed genome-wide RNA interference (RNAi) screening and identified 381 genes whose knockdown reduced infection. The Wnt pathway was the most represented pathway when gene hits were functionally clustered. With further investigation, we found that RVFV infection activated Wnt signaling, was enhanced when Wnt signaling was preactivated, was reduced with knockdown of ß-catenin, and was blocked using Wnt signaling inhibitors. Similar results were found using distantly related bunyaviruses La Crosse virus and California encephalitis virus, suggesting a conserved role for Wnt signaling in bunyaviral infection. We propose a model where bunyaviruses activate Wnt-responsive genes to regulate optimal cell cycle conditions needed to promote efficient viral replication. The findings in this study should aid in the design of efficacious host-directed antiviral therapeutics. IMPORTANCE: RVFV is a mosquito-borne bunyavirus that is endemic to Africa but has demonstrated a capacity for emergence in new territories (e.g., the Arabian Peninsula). As a zoonotic pathogen that primarily affects livestock, RVFV can also cause lethal hemorrhagic fever and encephalitis in humans. Currently, there are no treatments or fully licensed vaccines for this virus. Using high-throughput RNAi screening, we identified canonical Wnt signaling as an important host pathway regulating RVFV infection. The beneficial role of Wnt signaling was observed for RVFV, along with other disparate bunyaviruses, indicating a conserved bunyaviral replication mechanism involving Wnt signaling. These studies supplement our knowledge of the fundamental mechanisms of bunyavirus infection and provide new avenues for countermeasure development against pathogenic bunyaviruses.


Subject(s)
Genome, Viral/genetics , RNA Interference , Rift Valley Fever/metabolism , Rift Valley fever virus/physiology , Wnt Proteins/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , A549 Cells , Animals , Blotting, Western , Cells, Cultured , Chlorocebus aethiops , HeLa Cells , High-Throughput Screening Assays , Humans , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Rift Valley Fever/genetics , Rift Valley Fever/virology , Vero Cells , Virus Replication , Wnt Proteins/antagonists & inhibitors , Wnt Proteins/genetics , beta Catenin/antagonists & inhibitors , beta Catenin/genetics
4.
Lab Chip ; 16(9): 1625-35, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27025227

ABSTRACT

We present a microfluidic immunoassay platform based on the use of linear microretroreflectors embedded in a transparent polymer layer as an optical sensing surface, and micron-sized magnetic particles as light-blocking labels. Retroreflectors return light directly to its source and are highly detectable using inexpensive optics. The analyte is immuno-magnetically pre-concentrated from a sample and then captured on an antibody-modified microfluidic substrate comprised of embedded microretroreflectors, thereby blocking reflected light. Fluidic force discrimination is used to increase specificity of the assay, following which a difference imaging algorithm that can see single 3 µm magnetic particles without optical calibration is used to detect and quantify signal intensity from each sub-array of retroreflectors. We demonstrate the utility of embedded microretroreflectors as a new sensing modality through a proof-of-concept immunoassay for a small, obligate intracellular bacterial pathogen, Rickettsia conorii, the causative agent of Mediterranean Spotted Fever. The combination of large sensing area, optimized surface chemistry and microfluidic protocols, automated image capture and analysis, and high sensitivity of the difference imaging results in a sensitive immunoassay with a limit of detection of roughly 4000 R. conorii per mL.


Subject(s)
Immunoassay/instrumentation , Lab-On-A-Chip Devices , Rickettsia conorii/isolation & purification , Animals , Antibodies, Immobilized/metabolism , Automation, Laboratory , Cells, Immobilized , Computer-Aided Design , Equipment Design , Image Processing, Computer-Assisted , Immunoassay/methods , Immunomagnetic Separation , Limit of Detection , Magnetic Phenomena , Microscopy , Microscopy, Electron, Scanning , Microspheres , Microtechnology/methods , Polymethyl Methacrylate/chemistry , Proof of Concept Study , Reproducibility of Results , Rickettsia conorii/growth & development , Rickettsia conorii/immunology , Surface Properties
5.
Langmuir ; 30(26): 7902-12, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-24892492

ABSTRACT

We present a detailed analysis of the transient pH dynamics for a weak, buffered electrolyte subject to voltage-driven transport through an ion-selective membrane. We show that pH fronts emanate from the concentration polarization zone next to the membrane and that these propagating fronts change the pH in the system several units from its equilibrium value. The analysis is based on a 1D model using the unsteady Poisson-Nernst-Planck equations with nonequilibrium chemistry and without assumptions of electroneutrality or asymptotically thin electric double layers. Nonequilibrium chemical effects, especially for water splitting, are shown to be important for the dynamical and spatiotemporal evolution of the pH fronts. Nonetheless, the model also shows that at steady state the assumption of chemical equilibrium can still lead to good approximations of the global pH distribution. Moreover, our model shows that the transport of the hydronium ion in the extended space charge region is governed by a balance between electromigration and water self-ionization. On the basis of this observation, we present a simple model showing that the net flux of the hydronium ion is proportional to the length of the extended space charge region and the water self-ionization rate. To demonstrate these effects in practice, we have adopted the experiment of Mai et al. (Mai, J.; Miller, H.; Hatch, A. V. Spatiotemporal Mapping of Concentration Polarization Induced pH Changes at Nanoconstrictions. ACS Nano 2012, 6, 10206) as a model problem, and by including the full chemistry and transport, we show that the present model can capture the experimentally observed pH fronts. Our model can, among other things, be used to predict and engineer pH dynamics, which can be essential to the performance of membrane-based systems for biochemical separation and analysis.


Subject(s)
Membranes/chemistry , Static Electricity , Hydrogen-Ion Concentration
6.
Biosens Bioelectron ; 54: 435-41, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24316449

ABSTRACT

We present advancements in microfluidic technology for rapid detection of as few as 10 rickettsial organisms in complex biological samples. An immuno-reactive filter, macroporous polyacrylamide monolith (PAM), fabricated within a microfluidic channel enhances solid-phase immuno-capture, staining and detection of targeted bacteria. Bacterial cells in samples flowing through the channel are forced to interact with the PAM filter surface due to size exclusion, overcoming common transport and kinetic limitations for rapid (min), high-efficiency (~100%) capture. In the process, targeted cells in sample volumes of 10 µl to >100 µl are concentrated within a sub-50 nl region at the PAM filter edge in the microchannel, thus concentrating them over 1000-fold. This significantly increases sensitivity, as the hydrophilic PAM also yields low non-specific immuno-fluorescence backgrounds with samples including serum, blood and non-targeted bacteria. The concentrated target cells are detected using fluorescently-labeled antibodies. With a single 2.0×2.0×0.3 mm PAM filter, as few as 10 rickettsial organisms per 100 µl of lysed blood sample can be analyzed within 60 min, as compared to hours or even days needed for conventional detection methods. This method is highly relevant to rapid, multiplexed, low-cost point of care diagnostics at early stages of infection where diagnostics providing more immediate and actionable test results are needed to improve patient outcomes and mitigate potential natural and non-natural outbreaks or epidemics of rickettsial diseases.


Subject(s)
Biosensing Techniques/instrumentation , Microfluidic Analytical Techniques/instrumentation , Rickettsia typhi/isolation & purification , Typhus, Endemic Flea-Borne/blood , Acrylic Resins/chemistry , Equipment Design , Humans , Porosity , Sensitivity and Specificity , Typhus, Endemic Flea-Borne/diagnosis
7.
Adv Healthc Mater ; 1(6): 773-8, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23184830

ABSTRACT

A "living" radical photo-polymerization (LRPP) technique is used to rapidly fabricate microfluidic channels and micro-patterned porous polymer monoliths. Surface-initiated LRPP is then used to functionalize porous elements in a robust one-step surface modification process. Assay-ready platforms can be fully realized in less than 30 minutes. An application relevant to clinical diagnostics is presented.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Molecular Imprinting/methods , Nanostructures/chemistry , Nanostructures/radiation effects , Photochemistry/methods , Polymers/chemistry , Equipment Design , Equipment Failure Analysis , Light , Nanostructures/ultrastructure , Polymers/radiation effects , Porosity/radiation effects
8.
ACS Nano ; 6(11): 10206-15, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23061977

ABSTRACT

Under an applied electric field, concentration polarization (CP) arises from ion permselectivity of most nanoporous materials and biological ion channels. We present novel methods to quantitatively assess CP-induced spatiotemporal changes of pH that may significantly impact transport dynamics, device functionality, and physicochemical properties of molecular analytes in devices with nanofluidic constrictions. We measured pH fluctuations of >1.5 pH units and changes extending over 100's of micrometers from nanoconstrictions. The degree of change depends on key system parameters including buffer composition, surface charge, and strength of electric field. The results highlight the importance of neglected contributions of pH changes, and the approach can aid characterization and manipulation of mass transport in nanofluidic systems.


Subject(s)
Microfluidics/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Solutions/chemistry , Hydrogen-Ion Concentration , Ions , Porosity , Static Electricity
9.
Anal Chem ; 84(8): 3538-45, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22409593

ABSTRACT

Here we present an integrated microfluidic device for rapid and automated isolation and quantification of glycoprotein biomarkers directly from biological samples on a multidimensional analysis platform. In the first dimension, digital isoelectric fractionation (dIEF) uses discrete pH-specific membranes to separate proteins and their isoforms into precise bins in a highly flexible spatial arrangement on-chip. dIEF provides high sample preconcentration factors followed by immediate high-fidelity transfer of fractions for downstream analysis. We successfully fractionate isoforms of two potential glycoprotein cancer markers, fetuin and prostate-specific antigen (PSA), with 10 min run time, and results are compared qualitatively and quantitatively to conventional slab gel IEF. In the second dimension, functionalized monolithic columns are used to capture and detect targeted analytes from each fraction. We demonstrate rapid two-dimensional fractionation, immunocapture, and detection of C-reactive protein (CRP) spiked in human serum. This rapid, flexible, and automated approach is well-suited for glycoprotein biomarker research and verification studies and represents a practical avenue for glycoprotein isoform-based diagnostic testing.


Subject(s)
Glycoproteins/analysis , Microfluidics , Biomarkers/chemistry , Colorimetry , Fetuins/chemistry , Humans , Immunoassay , Isoelectric Focusing , Prostate-Specific Antigen/chemistry , Protein Isoforms/chemistry , Time Factors
10.
Anal Chem ; 83(8): 3120-5, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21417312

ABSTRACT

In this work, we introduce microscale isoelectric fractionation (µIF) for isolation and enrichment of molecular species at any desired location in a microfluidic chip. Narrow pH-specific polyacrylamide membranes are photopatterned in situ for customizable device fabrication; multiple membranes of precise pH are easily incorporated throughout existing channel layouts. Samples are electrophoretically driven across the membranes such that charged species, for example, proteins and peptides, are rapidly discretized into fractions based on their isoelectric points (pI) without the use of carrier ampholytes. This format makes fractions easy to compartmentalize and access for integrated preparative or analytical operations on-chip. We present and discuss the key design considerations and trade-offs associated with proper system operation and optimal run conditions. Efficient and reproducible fractionation of model fluorescent pI markers and proteins is achieved using single membrane fractionators at pH 6.5 and 5.3 from both buffer and Escherichia coli cell lysate sample conditions. Effective fractionation is also shown using a serial 3-membrane fractionator tailored for isolating analytes-of-interest from high abundance components of serum. We further demonstrate that proteins focused in pH specific bins can be rapidly and efficiently transferred to another location in the same chip without unwanted dilution or dispersive effects. µIF provides a rapid and versatile option for integrated sample prep or multidimensional analysis, and addresses the glaring proteomic need to isolate trace analytes from high-abundance species in minute volumes of complex samples.


Subject(s)
Acrylic Resins/chemistry , Membranes, Artificial , Animals , Biomarkers/analysis , C-Reactive Protein/isolation & purification , Carbonic Anhydrase II/isolation & purification , Carbonic Anhydrase II/metabolism , Cattle , Hemoglobins/isolation & purification , Humans , Hydrogen-Ion Concentration , Immunoglobulin G/isolation & purification , Isoelectric Focusing , Isoenzymes/isolation & purification , Isoenzymes/metabolism , Mice , Microfluidic Analytical Techniques , Serum Albumin/isolation & purification
11.
Anal Chem ; 82(21): 8813-20, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20945866

ABSTRACT

Nucleic acid based affinity reagents (e.g., aptamers) offer several possible advantages over antibodies as specific recognition elements in biochemical assays. Besides offering improved cost and stability, aptamers are ideal for rapid electrophoretic analysis due to their low molecular weight and high negative charge. While aptamers have proven well-suited for affinity-shift electrophoretic analysis, demonstrating a fully integrated aptamer-based assay platform represents an important achievement toward low-cost point-of-care analysis, particularly for remote or resource poor settings where cost and ambient stability of reagents is a key consideration. Here we perform and evaluate the suitability of aptamer-based affinity assays for two clinically relevant target analytes (IgE using a known aptamer and NF-κB using a thio-modified aptamer) in an integrated electrophoretic gel-shift platform. Key steps of (i) mixing sample with aptamer, (ii) buffer exchange, and (iii) preconcentration of sample were successfully integrated on-chip upstream of a fluorescence-based gel-shift analysis step. This approach, utilizing a size-exclusion membrane optimized here for aptamer retention and preconcentration with sample, enables automated sample-to-answer for trace analytes in 10 min or less. We addressed notable nonspecific interference from serum proteins by adding similar nucleic acid competitors to suppress such interactions with the aptamer. Nanomolar sensitivities were demonstrated and integrated preconcentration of sample provides an important means of further improving detection sensitivities. Aptamers proved superior in many respects to antibody reagents, particularly with regard to speed and resolution of gel-shifts associated with specific binding to target.


Subject(s)
Aptamers, Nucleotide/chemistry , Immunoglobulin E/analysis , Lab-On-A-Chip Devices , NF-kappa B/analysis , Base Sequence , Electrophoresis/instrumentation , Equipment Design , Humans , Molecular Sequence Data , NF-kappa B/blood , Sensitivity and Specificity
12.
Lab Chip ; 9(18): 2729-37, 2009 Sep 21.
Article in English | MEDLINE | ID: mdl-19704990

ABSTRACT

In this work we photopolymerized precise and well-controlled polyacrylamide porosity gradients in microchannels for microscale pore limit electrophoresis (microPLE) of proteins. Porosity was controlled via distributions of acrylamide monomer and bisacrylamide crosslinker. MicroPLE provides high-resolution fractionation of complex samples based on the spatial dependence of each species' electrophoretic pore limit--the porosity at which a protein's electrophoretic mobility is negligible due to its molecular size. Proteins ranging in molecular weight from 21.5 kDa-144 kDa were separated under native buffering conditions along 5-mm- and 7-mm-long microPLE gels spanning 10%T, 2.6%C-40%T, 12%C. The pore gradient gel is useful for estimating size-exclusion thresholds for a broad range of polymer concentrations and protein sizes simultaneously. We show that microPLE can be used to concentrate dilute samples by exploiting the stacking phenomenon associated with an analyte's decreasing electrophoretic mobility. Concentration factors>40,000 were demonstrated with dilute (100 pM) samples. A detailed theoretical analysis of microPLE transport behavior based on Ferguson assumptions provides scaling and design parameters with which to tailor gels based on fractionation or enrichment needs. Experimental results show that the Ferguson assumptions break down as proteins migrate beyond an effective pore limit, prompting the need for further investigation into this non-Ferguson regime.


Subject(s)
Electrophoresis, Polyacrylamide Gel/methods , Proteins/chemistry , Algorithms , Electrochemistry , Electromagnetic Fields , Electrophoresis, Polyacrylamide Gel/instrumentation , Equipment Design , Fluorescent Dyes , Molecular Weight , Porosity
13.
Electrophoresis ; 30(5): 742-57, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19260009

ABSTRACT

IEF is one of the most powerful and prevalent techniques used in separation sciences. The power of IEF comes from the fact that it not only separates analytes based on their pI but also focuses them into highly resolved bands. In line with the miniaturization trend spurring the analytical community, the past decade has yielded a wealth of research focused on implementing IEF in microfluidic chip-based formats (microIEF). Scaling down the separation technique provides several advantages such as reduced sample sizes, assay automation, and significant improvements in assay speed without sacrificing separation performance. Besides presenting microscale adaptations of standard schemes, researchers have also developed improved detection techniques, demonstrated novel microIEF assays, and incorporated microIEF with other analytical methods for achieving on-chip multidimensional separations. This review provides a brief historical outline of IEF's beginnings, theoretical incentives driving miniaturization of the methodology, a thorough synopsis of microIEF publications to date, and an outlook to the future.


Subject(s)
Isoelectric Focusing , Microfluidic Analytical Techniques/methods , Equipment Design , Isoelectric Focusing/instrumentation , Isoelectric Focusing/methods , Isoelectric Focusing/trends
14.
Lab Chip ; 8(12): 2046-53, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19023467

ABSTRACT

Towards designing a portable diagnostic device for detecting biological toxins in bodily fluids, we have developed microfluidic chip-based immunoassays that are rapid (< 20 minutes), require minimal sample volume (<10 microL) and have appreciable sensitivity and dynamic range (microM-pM). The microfluidic chip is being integrated with miniaturized electronics, optical elements, fluid-handling components, and data acquisition software to develop a portable, self-contained device. The device is intended for rapid, point-of-care (and, in future, point-of-incident) testing in case of an accidental or intentional exposure/intoxication to biotoxins. Detection of toxins and potential host-response markers is performed using microfluidic electrophoretic immunoassays integrated with sample preconcentration and mixing of analytes with fluorescently labeled antibodies. Preconcentration is enabled by photopolymerizing a thin, nanoporous membrane with a MW cut-off of approximately 10 kDa in the sample loading region of the chip. Polymeric gels with larger pores are located adjacent to the size exclusion membrane to perform electrophoretic separation of antibody-analyte complex and excess antibody. Measurement of the ratio of bound and unbound immune-complex using sensitive laser-induced fluorescence detection provides quantitation of analyte in the sample. We have demonstrated electrophoretic immunoassays for the biotoxins ricin, Shiga toxin I, and Staphylococcal enterotoxin B (SEB). With off-chip mixing and no sample preconcentration, the limits of detection (LOD) were 300 pM for SEB, 500 pM for Shiga toxin I, and 20 nM for ricin. With a 10 min on-chip preconcentration, the LOD for SEB is <10 pM. The portable device being developed is readily applicable to detection of proteinaceous biomarkers of many other diseases and is intended to represent the next-generation diagnostic devices capable of rapid and quantitative measurements of multiple analytes simultaneously.


Subject(s)
Microfluidics/methods , Reproducibility of Results , Toxins, Biological/chemistry , Dose-Response Relationship, Drug , Enterotoxins/analysis , Enterotoxins/chemistry , Immunoassay/instrumentation , Immunoassay/methods , Microfluidics/instrumentation , Ricin/analysis , Ricin/chemistry , Shiga Toxin 1/analysis , Shiga Toxin 1/chemistry , Time Factors , Toxins, Biological/analysis
15.
Anal Chem ; 80(9): 3327-33, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18341355

ABSTRACT

We present the first successful adaptation of immobilized pH gradients (IPGs) to the microscale (muIPGs) using a new method for generating precisely defined polymer gradients on-chip. Gradients of monomer were established via diffusion along 6 mm flow-restricted channel segments. Precise control over boundary conditions and the resulting gradient is achieved by continuous flow of stock solutions through side channels flanking the gradient segment. Once the desired gradient is established, it is immobilized via photopolymerization. Precise gradient formation was verified with spatial and temporal detection of a fluorescent dye added to one of the flanking streams. Rapid (<20 min) isoelectric focusing of several fluorescent pI markers and proteins is demonstrated across pH 3.8-7.0 muIPGs using both denaturing and nondenaturing conditions, without the addition of carrier ampholytes. The muIPG format yields improved stability and comparable resolution to prominent on-chip IEF techniques. In addition to rapid, high-resolution separations, the reported muIPG format is amenable to multiplexed and multidimensional analysis via custom gradients as well as integration with other on-chip separation methods.


Subject(s)
Isoelectric Focusing/methods , Microarray Analysis/methods , Proteins/isolation & purification , Acrylic Resins/chemistry , Hydrogen-Ion Concentration , Membranes, Artificial , Photochemistry , Spectrometry, Fluorescence
16.
Ann N Y Acad Sci ; 1098: 362-74, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17435142

ABSTRACT

While many point-of-care (POC) diagnostic methods have been developed for blood-borne analytes, development of saliva-based POC diagnostics is in its infancy. We have developed a portable microfluidic device for detection of potential biomarkers of periodontal disease in saliva. The device performs rapid microfluidic chip-based immunoassays (<3-10 min) with low sample volume requirements (10 microL) and appreciable sensitivity (nM-pM). Our microfluidic method facilitates hands-free saliva analysis by integrating sample pretreatment (filtering, enrichment, mixing) with electrophoretic immunoassays to quickly measure analyte concentrations in minimally pretreated saliva samples. The microfluidic chip has been integrated with miniaturized electronics, optical elements, such as diode lasers, fluid-handling components, and data acquisition software to develop a portable, self-contained device. The device and methods are being tested by detecting potential biomarkers in saliva samples from patients diagnosed with periodontal disease. Our microchip-based analysis can readily be extended to detection of biomarkers of other diseases, both oral and systemic, in saliva and other oral fluids.


Subject(s)
Lab-On-A-Chip Devices , Microfluidics/instrumentation , Periodontal Diseases/diagnosis , Periodontal Diseases/metabolism , Saliva/chemistry , Humans , Microchip Analytical Procedures/methods , Microfluidics/methods
17.
Proc Natl Acad Sci U S A ; 104(13): 5268-73, 2007 Mar 27.
Article in English | MEDLINE | ID: mdl-17374724

ABSTRACT

At present, point-of-care (POC) diagnostics typically provide a binary indication of health status (e.g., home pregnancy test strip). Before anticipatory use of diagnostics for assessment of complex diseases becomes widespread, development of sophisticated bioassays capable of quantitatively measuring disease biomarkers is necessary. Successful translation of new bioassays into clinical settings demands the ability to monitor both the onset and progression of disease. Here we report on a clinical POC diagnostic that enables rapid quantitation of an oral disease biomarker in human saliva by using a monolithic disposable cartridge designed to operate in a compact analytical instrument. Our microfluidic method facilitates hands-free saliva analysis by integrating sample pretreatment (filtering, enrichment, mixing) with electrophoretic immunoassays to quickly measure analyte concentrations in minimally pretreated saliva samples. Using 20 microl of saliva, we demonstrate rapid (<10 min) measurement of the collagen-cleaving enzyme matrix metalloproteinase-8 (MMP-8) in saliva from healthy and periodontally diseased subjects. In addition to physiologically measurable indicators of periodontal disease, conventional measurements of salivary MMP-8 were used to validate the microfluidic assays described in this proof-of-principle study. The microchip-based POC diagnostic demonstrated is applicable to rapid, reliable measurement of proteinaceous disease biomarkers in biological fluids.


Subject(s)
Chemistry, Clinical/methods , Electrophoresis/methods , Immunoassay/methods , Microfluidics/methods , Periodontal Diseases/diagnosis , Saliva/metabolism , Biomarkers/metabolism , Collagen/metabolism , Computers, Handheld , Enzyme-Linked Immunosorbent Assay , Equipment Design , Humans , Image Processing, Computer-Assisted , Matrix Metalloproteinase 8/metabolism , Periodontal Diseases/metabolism , Ultraviolet Rays
18.
Anal Chem ; 78(14): 4976-84, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16841920

ABSTRACT

The potential of integration of functions in microfluidic chips is demonstrated by implementing on-chip preconcentration of proteins prior to on-chip protein sizing by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Two polymeric elements-a thin (approximately 50 microm) size exclusion membrane for preconcentration and a longer (approximately cm) porous monolith for protein sizing-were fabricated in situ using photopolymerization. Contiguous placement of the two polymeric elements in the channels of a microchip enabled simple and zero dead volume integration of the preconcentration with SDS-PAGE. The size exclusion membrane was polymerized in the injection channel using a shaped laser beam, and the sizing monolith was cast by photolithography using a mask and UV lamp. Proteins injected electrophoretically were trapped on the upstream side of the size exclusion membrane (MW cutoff approximately 10 kDa) and eluted off the membrane by reversing the electric field. Subsequently, the concentrated proteins were separated in a cross-linked polyacrylamide monolith that was patterned contiguous to the size exclusion membrane. The extent of protein preconcentration is easily tuned by varying the voltage during injection or by controlling the sample volume loaded. Electric fields applied across the nanoporous membrane resulted in a concentration polarization effect evidenced by decreasing current over time and irreproducible migration of proteins during sizing. To minimize the concentration polarization effect, sieving gels were polymerized only on the separation side of the membrane, and an alternate electrical current path was employed, bypassing the membrane, for most of the elution and separation steps. Electrophoretically sweeping a fixed sample volume against the membrane yields preconcentration factors that are independent of protein mobility. The volume sweeping method also avoids biased protein loading from concentration polarization and sample matrix variations. Mobilities of the concentrated proteins were log-linear with respect to molecular weight, demonstrating the suitability of this approach for protein sizing. Proteins were concentrated rapidly (<5 min) over 1000-fold followed by high-resolution separation in the sieving monolith. Proteins with concentrations as low as 50 fM were detectable with 30 min of preconcentration time. The integrated preconcentration-sizing approach facilitates analysis of low-abundant proteins that cannot be otherwise detected. Moreover, the integrated preconcentration-analysis approach employing in situ formation of photopatterned polymeric elements provides a generic, inexpensive, and versatile method to integrate functions at chip level and can be extended to lowering of detection limits for other applications such as DNA analysis and clinical diagnostics.


Subject(s)
Acrylic Resins/chemistry , Cross-Linking Reagents/chemistry , Electrophoresis, Polyacrylamide Gel/methods , Microchip Analytical Procedures/methods , Proteins/analysis , Proteins/chemistry , Nanostructures , Photochemistry
19.
Lab Chip ; 4(1): 78-82, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15007445

ABSTRACT

A novel method has been developed for preserving molecules in microfluidic devices that also enables the control of the spatial and temporal concentrations of the reconstituted molecules within the devices. In this method, a storage cavity, embedded in a microchannel, is filled with a carbohydrate matrix containing, for example, a reagent. When the matrix is exposed to flowing liquid, it dissolves, resulting in the controlled reconstitution and release of the reagent from the cavity. The technique was demonstrated using two different model systems; the successful preservation and controlled release of beta-galactosidase was achieved. This method has possible applications for simple point-of-care drug delivery and immunoassays, and could be used to pattern the surfaces of microchannels. More broadly, this preservation and controlled release technique can be applied where the preservation and/or spatial and temporal control of chemical concentrations are desired.


Subject(s)
Microfluidics/methods , Preservation, Biological/methods , Proteins/chemistry , Dimethylpolysiloxanes , Fluorescence , Nylons , Solutions , Time Factors , beta-Galactosidase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL