Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Appl ; 17(2): e13622, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343780

ABSTRACT

Age-at-maturity and iteroparity are two life history variations of steelhead trout (Oncorhynchus mykiss) that are believed to increase population resilience and stability. While repeat-spawning individuals are thought to have historically made up a substantial portion of the reproductive population in the Columbia River and the majority of females still attempt outmigration as kelts, return rates of repeat-spawner are low throughout the basin and below 1% for the furthest migrating stocks. Notably, outmigrating adults exhibit variation in rematuration phenology, displaying either "consecutive" (reproduce immediately the following season) or "skip" (delay spawning for future seasons) spawning patterns. Here, we use low coverage whole genome sequencing of consecutive versus skip spawning female Columbia River steelhead from two populations to test for genomic differences between these two iteroparous phenotypes. We identified genomic regions on several chromosomes which were associated with the phenology of iteroparity, including a region on chromosome 25 containing two genes, estradiol receptor beta (ERß) and glycoprotein hormone beta-5 (GPHB5), which, in mammals, are estrogen-sensitive and expressed in reproductive tissues. Allele frequencies in this ERß/GPHB5 region differed among female steelhead of different age at maturity, but not males. These genes also shared an island of linkage disequilibrium with the SIX6 gene, 600Kbp away on the same chromosome, a region of known association with age-at-maturity. These observations contribute to growing evidence that age-at-maturity and the phenology of iteroparity are determined by overlapping physiological processes and genetic pathways.

2.
Gen Comp Endocrinol ; 332: 114181, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36455641

ABSTRACT

Consecutive and skip repeat spawning (1- or ≥2-year spawning interval) life histories commonly occur in seasonally breeding iteroparous fishes. Spawning interval variation is driven by energetic status and impacts fisheries management. In salmonids, energetic status (either absolute level of energy reserves or the rate of change of energy reserves, i.e., energy balance) is thought to determine reproductive trajectory during a critical period ∼1 year prior to initial spawning. However, information on repeat spawners is lacking. To examine the timing and the aspects of energetic status that regulate repeat spawning interval, female steelhead trout (Oncorhynchus mykiss) were fasted for 10 weeks after spawning and then fed ad libitum and compared to ad libitum fed controls. Plasma growth hormone (GH) and insulin-like growth factor-I (IGF-I) levels were measured to assess long-term energy balance. Plasma estradiol levels showed that some fish in both groups initiated a consecutive spawning cycle. In fasted fish, GH was lower at spawning in consecutive versus skip spawners. In consecutive spawners, GH was higher at spawning in fed versus fasted fish. These results suggest that fish with a less negative energy balance at spawning initiated reproductive development in the absence of feeding, but that feeding during the post-spawning period enabled initiation of reproduction in some fish with a more negative energy balance at spawning. Thus, both energy balance at spawning and feeding after spawning regulated reproductive schedules. These results show that the critical period model of salmonid maturation applies to regulation of repeat spawning, and that the reproductive decision window extends into the first 10 weeks after spawning.


Subject(s)
Oncorhynchus mykiss , Animals , Female , Growth Hormone
3.
Conserv Physiol ; 7(1): coz038, 2019.
Article in English | MEDLINE | ID: mdl-31380109

ABSTRACT

Many iteroparous fishes spawn after skipping one or more yearly cycles, which impacts recruitment estimates used for fisheries management and conservation. The physiological mechanisms underlying the development of consecutive and skip spawning life histories in fishes are not well understood. In salmonids, lipid energy reserves and/or growth are thought to regulate the initiation of reproductive maturation during a critical period ~1 year prior to spawning. The fasting spawning migration of summer-run steelhead trout (Oncorhynchus mykiss) results in significant depletion of energy reserves during the proposed critical period for repeat spawning. To determine whether and when lipid energy reserves and growth influence repeat spawning, measures of lipid energy reserves, growth rate and reproductive development were tracked in female steelhead trout from first to second spawning as a consecutive or skip spawner in captivity. Plasma triglyceride (TG) levels and growth rate were elevated by 10 weeks after spawning in reproductive (i.e. consecutive spawning) versus non-reproductive (i.e. skip spawning) individuals. Muscle lipid (ML) levels, condition factor and plasma estradiol levels increased at later time points. The early differences in plasma TG levels and increases in growth rate are attributable to differential rates of feeding and assimilation between the groups following spawning. A year after spawning, plasma TG levels, MLs and growth rate decreased in consecutive spawners, attributable to transfer of lipid reserves into the ovary. During the year prior to second spawning, energy reserves and plasma estradiol levels were higher in reproductive skip spawners versus consecutive spawners, reflecting the energy deficit after first spawning. These results suggest that the decision to initiate ovarian recrudescence occurs by 10 weeks after first spawning and are consistent with the differences in energy reserves acquired following spawning being a consequence of that decision. This information will increase the success of conservation projects reconditioning post-spawning summer-run steelhead trout.

SELECTION OF CITATIONS
SEARCH DETAIL
...