Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pain ; 160(9): 1989-2003, 2019 09.
Article in English | MEDLINE | ID: mdl-31045747

ABSTRACT

P2X4 is a ligand-gated ion channel implicated in neuropathic pain. Drug discovery efforts targeting P2X4 have been unsuccessful largely because of the difficulty in engineering specificity and selectivity. Here, we describe for the first time the generation of a panel of diverse monoclonal antibodies (mAbs) to human and mouse P2X4, capable of both positive and negative modulation of channel function. The affinity-optimised anti-P2X4 mAb IgG#151-LO showed exquisite selectivity for human P2X4 and induced potent and complete block of P2X4 currents. Site-directed mutagenesis of P2X4 revealed the head domain as a key interaction site for inhibitory mAbs. Inhibition of spinal P2X4 either by intrathecal delivery of an anti-P2X4 mAb or by systemic delivery of an anti-P2X4 bispecific mAb with enhanced blood-spinal cord barrier permeability produced long-lasting (>7 days) analgesia in a mouse model of neuropathic pain. We therefore propose that inhibitory mAbs binding the head domain of P2X4 have therapeutic potential for the treatment of neuropathic pain.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/metabolism , Neuralgia/metabolism , Neuralgia/prevention & control , Receptors, Purinergic P2X4/metabolism , Animals , Cells, Cultured , Female , HEK293 Cells , Humans , Injections, Spinal , Mice , Mice, Inbred C57BL , Protein Binding/physiology , Purinergic P2X Receptor Antagonists/administration & dosage , Purinergic P2X Receptor Antagonists/metabolism , Rats , Rats, Sprague-Dawley
2.
J Cereb Blood Flow Metab ; 39(10): 2074-2088, 2019 10.
Article in English | MEDLINE | ID: mdl-29845881

ABSTRACT

Delivery of biologic drugs across the blood-brain barrier is becoming a reality. However, the solutions often involve the assembly of complex multi-specific antibody molecules. Here we utilize a simple 12 amino-acid peptide originating from the melanotransferrin (MTf) protein that has shown improved brain delivery properties. 3D confocal fluorescence microscopic analysis demonstrated brain parenchymal localisation of a fluorescently labelled antibody (NIP228) when chemically conjugated to either the MTf peptide or full-length MTf protein. Measurement of plasma kinetics demonstrated the MTf peptide fusions had very similar kinetics to an unmodified NIP228 control antibody, whereas the fusion to MTf protein had significantly reduced plasma exposure most likely due to a higher tissue distribution in the periphery. Brain exposure for the MTf peptide fusions was significantly increased for the duration of the study, exceeding that of the fusions to full length MTf protein. Using a neuropathic pain model, we have demonstrated that fusions to interleukin-1 receptor antagonist (IL-1RA) are able to induce significant and durable analgesia following peripheral administration. These data demonstrate that recombinant and chemically conjugated MTf-based brain delivery vectors can deliver therapeutic levels of drug to the central nervous system.


Subject(s)
Drug Carriers/metabolism , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Membrane Glycoproteins/metabolism , Neuralgia/drug therapy , Peptides/metabolism , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Drug Carriers/chemistry , Humans , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Interleukin 1 Receptor Antagonist Protein/pharmacokinetics , Male , Membrane Glycoproteins/chemistry , Mice, Inbred C57BL , Neuralgia/metabolism , Peptides/chemistry
3.
Pain ; 159(3): 550-559, 2018 03.
Article in English | MEDLINE | ID: mdl-29351125

ABSTRACT

With less than 50% of patients responding to the current standard of care and poor efficacy and selectivity of current treatments, neuropathic pain continues to be an area of considerable unmet medical need. Biological therapeutics such as monoclonal antibodies (mAbs) provide better intrinsic selectivity; however, delivery to the central nervous system (CNS) remains a challenge. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is well described in inflammation-induced pain, and early-phase clinical trials evaluating its antagonism have exemplified its importance as a peripheral pain target. Here, we investigate the role of this cytokine in a murine model of traumatic nerve injury and show that deletion of the GM-CSF receptor or treatment with an antagonizing mAb alleviates pain. We also demonstrate enhanced analgesic efficacy using an engineered construct that has greater capacity to penetrate the CNS. Despite observing GM-CSF receptor expression in microglia and astrocytes, the gliosis response in the dorsal horn was not altered in nerve injured knockout mice compared with wild-type littermate controls as evaluated by ionized calcium binding adapter molecule 1 (Iba1) and glial fibrillary acidic protein, respectively. Functional analysis of glial cells revealed that pretreatment with GM-CSF potentiated lipopolysaccharide-induced release of proinflammatory cytokines. In summary, our data indicate that GM-CSF is a proinflammatory cytokine that contributes to nociceptive signalling through driving spinal glial cell secretion of proinflammatory mediators. In addition, we report a successful approach to accessing CNS pain targets, providing promise for central compartment delivery of analgesics.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Analgesics/therapeutic use , Animals , Antibodies/therapeutic use , Brain/cytology , CD11b Antigen/metabolism , Calcium-Binding Proteins/metabolism , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Glial Fibrillary Acidic Protein/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Neuralgia/pathology , Neuroglia/drug effects , Signal Transduction/drug effects
4.
Neurosci Lett ; 545: 23-8, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23603259

ABSTRACT

The expression of artemin (ARTN), a glial cell line-derived neurotrophic factor (GDNF) family ligand, increases in pre-clinical models of nociception and recent evidence suggests this growth factor may play a causative role in inflammatory pain mechanisms. The aim of this study was to demonstrate functional inhibition of ARTN with monoclonal antibodies and to determine whether ARTN neutralisation could reverse inflammatory pain in mice. We show that monoclonal antibodies with high affinity to ARTN, completely inhibit ARTN-induced Ret and ERK activation in a human neuroblastoma cell line, and block capsaicin-induced CGRP secretion from primary rat DRG cultures. In addition, administration of anti-ARTN antibodies to mice provides a transient, partial reversal (41%) of FCA-induced mechanical hypersensitivity. Anti-ARTN antibodies had no effect on hypersensitivity in response to partial nerve ligation in mice. These data suggest that ARTN-GFRα3 interactions partially mediate early stage nociceptive signalling following an inflammatory insult.


Subject(s)
Ganglia, Spinal/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Hyperalgesia/physiopathology , Nerve Tissue Proteins/metabolism , Signal Transduction , Animals , Hot Temperature , Male , Protein Binding , Rats , Rats, Sprague-Dawley
5.
Neurosci Lett ; 524(2): 107-10, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22819976

ABSTRACT

Animal models are an integral part of pain research. However, current models tend to rely on evoked responses and there is a belief that non-evoked responses may be a more relevant behavioural readout as the animal responds in a more natural manner. Here, dynamic weight bearing (DWB), a novel method for assessing mechanical hypersensitivity, was evaluated using the Freund's Complete Adjuvant (FCA) model of inflammatory pain in mice. DWB enables the measurement of weight placed through all four paws of a freely moving animal. The data obtained from DWB was compared with data acquired using the standard static weight bearing (incapacitance) test. In both tests reversal of FCA induced mechanical hypersensitivity was investigated using the selective COX2 inhibitor celecoxib. Mice treated with FCA placed less weight through the ipsilateral hindpaw compared to vehicle controls. This reduction was reversed by celecoxib (30mg/kg p.o.) in the dynamic and static weight bearing tests. The data presented here suggests that dynamic weight bearing may provide a novel end point for the development of new analgesics.


Subject(s)
Adjuvants, Immunologic , Freund's Adjuvant , Hyperalgesia/physiopathology , Weight-Bearing , Animals , Celecoxib , Chronic Pain/etiology , Chronic Pain/physiopathology , Cyclooxygenase 2 Inhibitors/pharmacology , Endpoint Determination , Female , Hyperalgesia/etiology , Inflammation/etiology , Inflammation/physiopathology , Mice , Mice, Inbred C57BL , Pain Measurement , Pyrazoles/pharmacology , Sulfonamides/pharmacology
6.
J Neurosci ; 28(44): 11263-8, 2008 Oct 29.
Article in English | MEDLINE | ID: mdl-18971468

ABSTRACT

ATP is a known mediator of inflammatory and neuropathic pain. However, the mechanisms by which specific purinergic receptors contribute to chronic pain states are still poorly characterized. Here, we demonstrate that in response to peripheral nerve injury, P2X(4) receptors (P2X(4)R) are expressed de novo by activated microglia in the spinal cord. Using in vitro and in vivo models, we provide direct evidence that P2X(4)R stimulation leads to the release of BDNF from activated microglia and, most likely phosphorylation of the NR1 subunit of NMDA receptors in dorsal horn neurons of the spinal cord. Consistent with these findings, P2X4-deficient mice lack mechanical hyperalgesia induced by peripheral nerve injury and display impaired BDNF signaling in the spinal cord. Furthermore, ATP stimulation is unable to stimulate BDNF release from P2X(4)-deficient mice microglia in primary cultures. These results indicate that P2X(4)R contribute to chronic pain through a central inflammatory pathway. P2X(4)R might thus represent a potential therapeutic target to limit microglia-mediated inflammatory responses associated with brain injury and neurodegenerative disorders.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Microglia/metabolism , Neuralgia/metabolism , Peripheral Nerve Injuries , Receptors, Purinergic P2/physiology , Spinal Cord/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , COS Cells , Cells, Cultured , Chlorocebus aethiops , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuralgia/genetics , Pain/genetics , Pain/metabolism , Pain Measurement/methods , Peripheral Nerves/metabolism , Receptors, Purinergic P2/biosynthesis , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2X4 , Up-Regulation/physiology
7.
Pain ; 139(1): 225-236, 2008 Sep 30.
Article in English | MEDLINE | ID: mdl-18502582

ABSTRACT

It has been postulated that the G protein-coupled receptor, GPR55, is a third cannabinoid receptor. Given that the ligands at the CB(1) and CB(2) receptors are effective analgesic and anti-inflammatory agents, the role of GPR55 in hyperalgesia associated with inflammatory and neuropathic pain has been investigated. As there are no well-validated GPR55 tool compounds, a GPR55 knockout (GPR55(-/-)) mouse line was generated and fully backcrossed onto the C57BL/6 strain. General phenotypic analysis of GPR55(-/-) mice revealed no obvious primary differences, compared with wild-type (GPR55(+/+)) littermates. GPR55(-/-) mice were then tested in the models of adjuvant-induced inflammation and partial nerve ligation. Following intraplantar administration of Freund's complete adjuvant (FCA), inflammatory mechanical hyperalgesia was completely absent in GPR55(-/-) mice up to 14 days post-injection. Cytokine profiling experiments showed that at 14 days post-FCA injection there were increased levels of IL-4, IL-10, IFN gamma and GM-CSF in paws from the FCA-injected GPR55(-/-) mice when compared with the FCA-injected GPR55(+/+) mice. This suggests that GPR55 signalling can influence the regulation of certain cytokines and this may contribute to the lack of inflammatory mechanical hyperalgesia in the GPR55(-/-) mice. In the model of neuropathic hypersensitivity, GPR55(-/-) mice also failed to develop mechanical hyperalgesia up to 28 days post-ligation. These data clearly suggest that the manipulation of GPR55 may have therapeutic potential in the treatment of both inflammatory and neuropathic pain.


Subject(s)
Hyperalgesia/metabolism , Inflammation Mediators/physiology , Neuralgia/metabolism , Receptors, Cannabinoid/physiology , Amino Acid Sequence , Animals , Base Sequence , Female , Hyperalgesia/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammation/physiopathology , Inflammation Mediators/metabolism , Ligation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Neuralgia/genetics , Pain Measurement/methods , Physical Stimulation/methods , Receptors, Cannabinoid/deficiency , Receptors, Cannabinoid/genetics
8.
J Pain ; 9(7): 580-7, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18420461

ABSTRACT

UNLABELLED: The role of specific nicotinic receptor (nAChR) subtypes in antinociception has not been fully elucidated because of the lack, until recently, of selective tool compounds. (R)-N-(1-azabicyclo[2.2.2]oct-3-yl)(5-(2-pyridyl)thiopene-2-carboxamide) (compound B) is reported to be an agonist selective for the alpha(7)nAChR and in the present study was found to be efficacious in inflammatory pain models in 2 species. Compound B reversed complete Freund adjuvant-induced reductions in paw withdrawal thresholds in rat and mouse in a dose-related manner, producing maximum reversals of 65% +/- 4% at 10 mg/kg and 87% +/- 15% at 20 mg/kg. When rats and mice were predosed with the centrally penetrant, broad-spectrum nicotinic receptor antagonist mecamylamine, the efficacy of the agonist was significantly inhibited, producing reversals of only 11% +/- 5% at 10 mg/kg and 5% +/- 13% at 20 mg/kg, confirming activity via nicotinic receptors. Rats were also predosed systemically with the selective low-brain penetrant alpha(7)-antagonist methyllycaconitine, which had no effect on agonist activity (90% +/- 18% at 10 mg/kg), suggesting a central involvement. This hypothesis was further established with methyllycaconitine completely inhibited the agonist effect when dosed intrathecally (1% +/- 7%). PERSPECTIVE: These studies provide good rationale for the utility of selective, central nervous system penetrant agonists at the alpha(7)-nicotinic receptor for the treatment of inflammatory pain.


Subject(s)
Benzofurans/pharmacology , Hyperalgesia/drug therapy , Quinuclidines/pharmacology , Receptors, Nicotinic/physiology , Aconitine/administration & dosage , Aconitine/analogs & derivatives , Aconitine/pharmacology , Animals , Behavior, Animal/drug effects , Benzofurans/administration & dosage , Dose-Response Relationship, Drug , Female , Freund's Adjuvant , Hyperalgesia/chemically induced , Hyperalgesia/physiopathology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/physiopathology , Injections, Intraperitoneal , Male , Mecamylamine/administration & dosage , Mecamylamine/pharmacology , Mice , Mice, Inbred C57BL , Models, Animal , Nicotinic Antagonists/administration & dosage , Nicotinic Antagonists/pharmacology , Pain/drug therapy , Pain/metabolism , Pain/physiopathology , Pain Measurement/methods , Quinuclidines/administration & dosage , Rats , Weight-Bearing/physiology , alpha7 Nicotinic Acetylcholine Receptor
9.
J Neurosci ; 26(50): 12852-60, 2006 Dec 13.
Article in English | MEDLINE | ID: mdl-17167076

ABSTRACT

We used a mouse with deletion of exons 4, 5, and 6 of the SCN11A (sodium channel, voltage-gated, type XI, alpha) gene that encodes the voltage-gated sodium channel Na(v)1.9 to assess its contribution to pain. Na(v)1.9 is present in nociceptor sensory neurons that express TRPV1, bradykinin B2, and purinergic P2X3 receptors. In Na(v)1.9-/- mice, the non-inactivating persistent tetrodotoxin-resistant sodium TTXr-Per current is absent, whereas TTXr-Slow is unchanged. TTXs currents are unaffected by the mutation of Na(v)1.9. Pain hypersensitivity elicited by intraplantar administration of prostaglandin E2, bradykinin, interleukin-1beta, capsaicin, and P2X3 and P2Y receptor agonists, but not NGF, is either reduced or absent in Na(v)1.9-/- mice, whereas basal thermal and mechanical pain sensitivity is unchanged. Thermal, but not mechanical, hypersensitivity produced by peripheral inflammation (intraplanatar complete Freund's adjuvant) is substantially diminished in the null allele mutant mice, whereas hypersensitivity in two neuropathic pain models is unchanged in the Na(v)1.9-/- mice. Na(v)1.9 is, we conclude, an effector of the hypersensitivity produced by multiple inflammatory mediators on nociceptor peripheral terminals and therefore plays a key role in mediating peripheral sensitization.


Subject(s)
Hyperalgesia/metabolism , Neuropeptides/biosynthesis , Peripheral Nerves/metabolism , Sodium Channels/biosynthesis , Animals , Female , Hyperalgesia/genetics , Inflammation/genetics , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NAV1.9 Voltage-Gated Sodium Channel , Neurons, Afferent/metabolism , Neuropeptides/genetics , Pain/genetics , Pain/metabolism , Pain Measurement/methods , Sodium Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...