Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Biotechnol ; 20(2): e3119, 2022 Apr.
Article in English | MEDLINE | ID: mdl-36337069

ABSTRACT

Background: Newcastle disease, is one of the most important illnesses in the aviculture industry which shows a constant threat. In this case, the vaccine could be considered an important solution to prevent and control this disease. So, the development of a new and more effective vaccine against Newcastle disease is an urgent need. Immune informatics is an important field that provides insight into the experimental procedure and could facilitate the analysis of large amounts of immunological data generated by experimental research and help to design a new vaccine candidate. Objectives: This study is aimed at bioinformatics to investigate and select the most immunogenic and conserved epitopes derived from F and HN glycoproteins, which play a key role in pathogenesis and immunity. This strategy could cover a wide range of Newcastle disease viruses. Materials and Method: For expression in both E. coli (as an injectable recombinant vaccine candidate) and maize plant (as an edible vaccine candidate) host, two constructs were designed and analyzed separately. Furthermore, the role of LTB as an effective bio-adjuvant for general eliciting of the immune system and simultaneous expressions with those two antigens was evaluated. Hence, here a multimeric recombinant protein with the abbreviation LHN2F from the highly immunogenic part of HN, F and LTB proteins were designed. The synthetic construct was analyzed based on different bioinformatics tools. Results: The proper immunogenicity and stability of this multimeric fusion protein have been shown by immunoinformatic methods from various servers. To confirm the function of the designed protein, the final molecule was docked to chicken MHC class I using the Pyrex-python 0.8 program. the results of Immune Epitope analysis were confirmed by the docking results between protein and receptor. Conclusions: The results of structural and immunological computational studies proposed that the protein deduced from this novel construct could act as a vaccine candidate for Newcastle disease virus control and prophylactic.

2.
Iran J Biotechnol ; 20(3): e3245, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36381277

ABSTRACT

Background: Although epidermal growth factor (EGF) controls many crucial processes in the human body, it can increase the risk of developing cancer when overexpresses. Objectives: This study focused on detecting cancer-associated genes that are dysregulated by EGF overexpression. Materials and Methods: To identify differentially expressed genes (DEGs), two independent meta-analyses with normal and cancer RNA-Seq samples treated by EGF were conducted. The new DEGs detected only via two meta-analyses were used in all downstream analyses. To reach count data, the tools of FastQC, Trimmomatic, HISAT2, SAMtools, and HTSeq-count were employed. DEGs in each individual RNA-Seq study and the meta-analysis of RNA-Seq studies were identified using DESeq2 and metaSeq R package, respectively. MCODE detected densely interconnected top clusters in the protein-protein interaction (PPI) network of DEGs obtained from normal and cancer datasets. The DEGs were then introduced to Enrichr and ClueGO/CluePedia, and terms, pathways, and hub genes enriched in Gene Ontology (GO) and KEGG and Reactome were detected. Results: The meta-analysis of normal and cancer datasets revealed 990 and 541 new DEGs, all upregulated. A number of DEGs were enriched in protein K48-linked deubiquitination, ncRNA processing, ribosomal large subunit binding, and protein processing in endoplasmic reticulum. Hub genes overexpression (DHX33, INTS8, NMD3, OTUD4, P4HB, RPS3A, SEC13, SKP1, USP34, USP9X, and YOD1) in tumor samples were validated by TCGA and GTEx databases. Overall survival and disease-free survival analysis also confirmed worse survival in patients with hub genes overexpression. Conclusions: The detected hub genes could be used as cancer biomarkers when EGF overexpresses.

3.
Iran J Biotechnol ; 19(1): e2838, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34179198

ABSTRACT

BACKGROUND: Barley (Hordeum vulgar L.) is a valuable platform for producing recombinant proteins. Before using different barley cultivars as an efficient platform for molecular farming, optimization of cultural conditions and studying the effective factors on the tissue culture are critical. OBJECTIVES: In this study, we evaluated callus induction, plant regeneration and changes in the levels of total antioxidant, total phenol and endogenous hormones of three Iranian barley cultivars (Reyhan, Yousef and Bahman) and Golden Promise cultivar. MATERIALS AND METHODS: We used immature embryos as explants on MS-based medium containing 3 mg.L-1 2,4-D for callus induction. Calluses were transferred to regeneration media with 2 mg.L-1 BAP. The levels of endogenous hormones were measured using High-Performance Liquid Chromatography system and total antioxidant and total phenols were determined using a spectrophotometer. RESULTS: We demonstrated that callus formation was very high in all cultivars (about 91%) and all immature embryo explants had the potential to produce embryogenic calluses. The present study also showed that the regeneration rates among the studied cultivars were very different and the Iranian cultivars showed lower regeneration percentages (about 1.4%) compared to Golden Promise cultivar (about 72.5%). The levels of endogenous hormones in Iranian cultivars and Golden Promise varied distinctly and significant differences in terms of total antioxidants and total phenols were found in the two groups. CONCLUSIONS: Accumulated evidence suggests that for successful regeneration of recalcitrant cultivars, external treatments should be done in a way to reduce the inhibitory effects of internal factors.

4.
Iran J Biotechnol ; 18(3): e2597, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33850947

ABSTRACT

BACKGROUND: Glyphosate is a non-selective systemic herbicide with a broad spectrum of weed control that inhibits a key enzyme, 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, in the shikimate pathway. OBJECTIVES: Isolation and analysis of the epsps (aroA) gene responsible for glyphosate-tolerance in bacteria from Roundup- contaminated soils was the aim of this study. MATERIALS AND METHODS: Sampling was done from the soil of the gardens which were heavily contaminated by Roundup herbicide and then bacterial screening was performed in the presence of high concentrations of glyphosate. The genus of bacterium was identified via molecular methods such as 16S rRNA sequencing. The aroA gene of this bacterium (aroA HA-09) was isolated using the primers designed-upon specific regions of aroA genes available in NCBI GenBank database. The PCR product was cloned, sequenced and subcloned into pET28a as an expression vector and transferred into E. coli strain BL21(DE3). The cells were inoculated in liquid M9 minimal medium containing IPTG and different concentrations of glyphosate. RESULTS: The genus of bacterium was identified as Pseudomonas sp. strain HA-09. The isolated aroA HA-09 gene from this bacterium was approximately 2.2 kb in size. Bioassay of E. coli expressing this gene showed high tolerance to glyphosate (up to 300 mM). CONCLUSION: The aroA HA-09 gene could be considered as a novel and efficient candidate for development of glyphosate-tolerant crop plants.

5.
Jundishapur J Microbiol ; 8(11): e25462, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26855744

ABSTRACT

BACKGROUND: Hepatitis c virus (HCV), prevalent among 3% of the world population, is a major worldwide public health concern and an effective vaccination could help to overcome this problem. Plant seeds as low-cost vaccine expression platforms are highly desirable to produce antigens. OBJECTIVES: The present study was aimed at investigating the possible expression of recombinant HCV core protein, as a leading HCV vaccine candidate, in canola (Brassica napus) plant seeds in order to be used as an effective immunogen for vaccine researches. MATERIALS AND METHODS: A codon-optimized gene harboring the Kozak sequence, 6 × His-tag, HCVcp (1 - 122 residues) and KDEL (Lys-Asp-Glu-Leu) peptide in tandem was designed and expressed under the control of the seed specific promoter, fatty acid elongase 1 (FAE1), to accumulate the recombinant protein in canola (B. napus L.) seeds. Transgenic lines were screened and the presence of the transgene was confirmed in the T0 plants by polymerase chain reaction (PCR). The quantity and quality of the HCV core protein (HCVcp) in transgenic seeds were evaluated by enzyme-linked immunosorbent assay (ELISA) and western blot, respectively. RESULTS: Western blot analysis using anti-His antibody confirmed the presence of a 15 kDa protein in the seeds of T1 transgenic lines. The amount of antigenic protein accumulated in the seeds of these transgenic lines was up to 0.05% of the total soluble protein (TSP). CONCLUSIONS: The canola oilseeds could provide a useful expression system to produce HCV core protein as a vaccine candidate.

6.
Iran J Basic Med Sci ; 16(12): 1245-53, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24570830

ABSTRACT

UNLABELLED: Objective(s) : Although bacteria and molds are the pioneering microorganisms for production of many enzymes, yet yeasts provide safe and reliable sources of enzymes with applications in food and feed. MATERIALS AND METHODS: Single xylanase producer yeast was isolated from plant residues based on formation of transparent halo zones on xylan agar plates. The isolate showed much greater endo-1, 4-ß-xylanase activity of 2.73 IU/ml after optimization of the initial extrinsic conditions. It was shown that the strain was also able to produce ß-xylosidase (0.179 IU/ml) and α-arabinofuranosidase (0.063 IU/ml). Identification of the isolate was carried out and the endo-1, 4-ß-xylanaseproduction by feeding the yeast cells on agro-industrial residues was optimized using one factor at a time approach. RESULTS: The enzyme producer strain was identified as Aureobasidiumpullulans. Based on the optimization approach, an incubation time of 48 hr at 27°C, inoculum size of 2% (v/v), initial pH value of 4 and agitation rate of 90 rpm were found to be the optimal conditions for achieving maximum yield of the enzyme. Xylan, containing agricultural residues, was evaluated as low-cost alternative carbon source for production of xylanolytic enzymes. The production of xylanase enzyme in media containing wheat bran as the sole carbon source was very similar to that of the medium containing pure beechwoodxylan. CONCLUSION: This finding indicates the feasibility of growing of A. pullulans strain SN090 on wheat bran as an alternate economical substrate in order for reducing the costs of enzyme production and using this fortified agro-industrial byproduct in formulation of animal feed.

SELECTION OF CITATIONS
SEARCH DETAIL
...