Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 359(6375): 555-559, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29217584

ABSTRACT

It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age-which we term genosenium-shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions.


Subject(s)
Aging/genetics , DNA Repair/genetics , Mutation Rate , Neurodegenerative Diseases/genetics , Neurogenesis/genetics , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Child, Preschool , Cockayne Syndrome/genetics , DNA Mutational Analysis , Female , Hippocampus/cytology , Hippocampus/embryology , Humans , Infant , Male , Middle Aged , Neurons , Prefrontal Cortex/cytology , Prefrontal Cortex/embryology , Single-Cell Analysis , Whole Genome Sequencing , Xeroderma Pigmentosum/genetics , Young Adult
2.
Cell Rep ; 21(13): 3754-3766, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29281825

ABSTRACT

Focal cortical dysplasia (FCD) and hemimegalencephaly (HME) are epileptogenic neurodevelopmental malformations caused by mutations in mTOR pathway genes. Deep sequencing of these genes in FCD/HME brain tissue identified an etiology in 27 of 66 cases (41%). Radiographically indistinguishable lesions are caused by somatic activating mutations in AKT3, MTOR, and PIK3CA and germline loss-of-function mutations in DEPDC5, NPRL2, and TSC1/2, including TSC2 mutations in isolated HME demonstrating a "two-hit" model. Mutations in the same gene cause a disease continuum from FCD to HME to bilateral brain overgrowth, reflecting the progenitor cell and developmental time when the mutation occurred. Single-cell sequencing demonstrated mTOR activation in neurons in all lesions. Conditional Pik3ca activation in the mouse cortex showed that mTOR activation in excitatory neurons and glia, but not interneurons, is sufficient for abnormal cortical overgrowth. These data suggest that mTOR activation in dorsal telencephalic progenitors, in some cases specifically the excitatory neuron lineage, causes cortical dysplasia.


Subject(s)
Malformations of Cortical Development/genetics , Mutation/genetics , Signal Transduction , Stem Cells/metabolism , TOR Serine-Threonine Kinases/metabolism , Telencephalon/pathology , Animals , Cell Lineage , Class I Phosphatidylinositol 3-Kinases/genetics , Hemimegalencephaly/genetics , Hemimegalencephaly/pathology , High-Throughput Nucleotide Sequencing , Humans , Mice , Neurons/metabolism , Neurons/pathology
3.
BMC Biol ; 13: 44, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26108483

ABSTRACT

BACKGROUND: In many insect species, fitness trade-offs exist between maximizing body size and developmental speed. Understanding how various species evolve different life history strategies requires knowledge of the physiological mechanisms underlying the regulation of body size and developmental timing. Here the roles of juvenile hormone (JH) and insulin/target of rapamycin (TOR) signaling in the regulation of the final body size were examined in the tobacco hornworm, Manduca sexta. RESULTS: Feeding rapamycin to wild-type larvae decreased the growth rate but did not alter the peak size of the larvae. In contrast, feeding rapamycin to the JH-deficient black mutant larvae caused the larvae to significantly increase the peak size relative to the DMSO-fed control animals by lengthening the terminal growth period. Furthermore, the critical weight was unaltered by feeding rapamycin, indicating that in Manduca, the critical weight is not influenced by insulin/TOR signaling. In addition, post-critical weight starved black mutant Manduca given rapamycin underwent metamorphosis sooner than those that were fed, mimicking the "bail-out mechanism". CONCLUSIONS: Our study demonstrates that JH masks the effects of insulin/TOR signaling in the determination of the final body size and that the critical weights in Drosophila and Manduca rely on distinct mechanisms that reflect different life history strategies. Our study also suggests that TOR signaling lengthens the terminal growth period in Manduca as it does in Drosophila, and that JH levels determine the relative contributions of nutrient- and body size-sensing pathways to metamorphic timing.


Subject(s)
Insulin/metabolism , Juvenile Hormones/metabolism , Manduca/growth & development , TOR Serine-Threonine Kinases/metabolism , Animals , Body Size , Manduca/metabolism , Signal Transduction
4.
Ann Neurol ; 77(4): 720-5, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25599672

ABSTRACT

Focal malformations of cortical development, including focal cortical dysplasia (FCD) and hemimegalencephaly (HME), are important causes of intractable childhood epilepsy. Using targeted and exome sequencing on DNA from resected brain samples and nonbrain samples from 53 patients with FCD or HME, we identified pathogenic germline and mosaic mutations in multiple PI3K/AKT pathway genes in 9 patients, and a likely pathogenic variant in 1 additional patient. Our data confirm the association of DEPDC5 with sporadic FCD but also implicate this gene for the first time in HME. Our findings suggest that modulation of the mammalian target of rapamycin pathway may hold promise for malformation-associated epilepsy.


Subject(s)
Hemimegalencephaly/genetics , Malformations of Cortical Development/genetics , Mutation/genetics , Repressor Proteins/genetics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , Cohort Studies , GTPase-Activating Proteins , Hemimegalencephaly/diagnosis , Humans , Malformations of Cortical Development/diagnosis , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...