Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 928: 172192, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38604363

ABSTRACT

Quantifying pollutant removal by stormwater wetlands requires intensive sampling which is cost-prohibitive for authorities responsible for a large number of wetlands. Wetland managers require simple indicators that provide a practical means of estimating performance and prioritising maintenance works across their asset base. We therefore aimed to develop vegetation cover and metrics derived from monitoring water level, as simple indicators of likely nutrient pollutant removal from stormwater wetlands. Over a two-year period, we measured vegetation cover and water levels at 17 wetlands and used both to predict nitrogen (N) and phosphorus (P) removal. Vegetation cover explained 48 % of variation in total nitrogen (TN) removal; with a linear relationship suggesting an approximate 9 % loss in TN removal per 10 % decrease in vegetation cover. Vegetation cover is therefore a useful indicator of TN removal. Further development of remotely-sensed data on vegetation configuration, species and condition will likely improve the accuracy of TN removal estimates. Total phosphorus (TP) removal was not predicted by vegetation cover, but was weakly related to the median water level which explained 25 % of variation TP removal. Despite weak prediction of TP removal, metrics derived from water level sensors identified faults such as excessive inflow and inefficient outflow, which in combination explained 50 % of the variation in the median water level. Monitoring water levels therefore has the potential to detect faults prior to loss of vegetation cover and therefore TN removal, as well as inform the corrective action required.

2.
Water Res ; 247: 120703, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37979332

ABSTRACT

Climate change and urbanization threaten streams and the biodiversity that rely upon them worldwide. Emissions of greenhouse gases are causing air and sea surface temperatures to increase, and even small areas of urbanization are degrading stream biodiversity, water quality and hydrology. However, empirical evidence of how increasing air temperatures and urbanization together affect stream temperatures over time and their relative influence on stream temperatures is limited. This study quantifies changes in stream temperatures in a region in South-East Australia with an urban-agricultural-forest landcover gradient and where increasing air temperatures have been observed. Using Random Forest models we identify air temperature and urbanization drive increasing stream temperatures and that their combined effects are larger than their individual effects occurring alone. Furthermore, we identify potential mitigation measures useful for waterway managers and policy makers. The results show that both local and global solutions are needed to reduce future increases to stream temperature.


Subject(s)
Rivers , Urbanization , Temperature , Climate Change , Biodiversity
3.
Water Res ; 188: 116486, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33080456

ABSTRACT

Biofiltration systems can help mitigate the impact of urban runoff as they can treat, retain and attenuate stormwater. It is important to select the optimal design characteristics of biofilters (e.g., vegetation, filter media depth) to ensure high treatment performance. Operational conditions (e.g., infiltration rate) can also lead to significant changes in biofilter treatment performance over time. The impact of specific operational conditions on water quality treatment performance of stormwater biofilters is still not well understood. Furthermore, despite the importance of design characteristics and operational conditions on biofilter treatment performance, there is a lack of models that can be used to determine the optimal design and operation. In this paper, we developed a series of statistical models to predict the Total Phosphorus (TP) and Total Nitrogen (TN) removal performance of stormwater biofilters using various numbers of design characteristics and operational conditions. These statistical models were tested using data collected from four extensive laboratory-scale biofilter column studies. It was found that all models performed relatively well with a Nash-Sutcliffe Efficiency (NSE) of 0.42 - 0.61 for TP and 0.37 - 0.63 for TN. The most important design characteristics were filter media type and depth for TP treatment, and vegetation type and submerged zone depth for TN treatment. In addition, infiltration rate and inflow concentrations were the operational conditions that greatly influence outflow TP and TN concentrations from stormwater biofilters. As such, these variables need to be carefully considered when designing and operating stormwater biofilters. Sensitivity analysis results indicate that the model was quite sensitive to all regression coefficients and intercepts. Additional modelling exercises show that the model could be further simplified by reducing the number of cross-correlated parameters. These models can be used by practitioners for not just optimising the design, but also operating biofilters using real-time monitoring and control to achieve optimum performance.


Subject(s)
Filtration , Water Purification , Models, Statistical , Nitrogen , Nutrients , Rain
4.
Water Res ; 159: 521-537, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31132624

ABSTRACT

The intermittent nature of stormwater runoff impacts the treatment performance of biofilters, also known as stormwater biofiltration or bioretention systems and raingardens. During extended dry periods, which are common even in temperate climates, plants can perish, creating unattractive and non-functional systems that might leach pollutants during the next rainfall event. The current solution is to irrigate during long dry spells, which is costly and unsustainable as biofilters become more widespread. This paper presents the development of dual-mode biofilters, where stormwater and greywater are treated within the same system. Fifty columns, utilising eight plant species, including understory and climbing ornamentals, and designs with and without a carbon source in the submerged zone, were subjected to alternating greywater and stormwater inflows over five months. Six sampling events investigated treatment performance across these switching inflows and an extended dry period (atypical event). Good removal of total suspended solids (>83%), biochemical oxygen demand (>86%) and some heavy metals (e.g. lead >96%) were reported irrespective of design. Plant species selection was critical for the removal of nitrogen (2 to 79%) and phosphorus (12 to 75%) under dual-mode operation. However, following the extended dry period, plants with the lowest nutrient outflow concentrations also experienced some of the highest sediment and carbon concentrations, suggesting that a mixture of plant species may be beneficial for withstanding abnormal conditions. Differences between the treatment performance of designs with and without a carbon source were negligible, with potential benefits possibly negated due to the increased root mass that comes with age (systems were approximately two years old) and the release of carbon from root exudates. The results demonstrate the potential for dual-mode stormwater-greywater biofilters as an alternative to single-mode systems as they can provide effective treatment, along with greater volumes of treated water, while maintaining system performance throughout the year.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water Purification , Filtration , Nitrogen , Phosphorus , Rain
5.
Environ Sci Technol ; 51(7): 3703-3713, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28272882

ABSTRACT

Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N2O) and methane (CH4) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH4 and N2O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N2O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N2O accounted for <1.5% of the incoming total nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N2O or CH4 in biofilter effluent appears relatively low.


Subject(s)
Denitrification , Nitrogen , Methane , Nitrous Oxide , Water Purification
6.
Environ Sci Technol ; 51(4): 2280-2287, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28068476

ABSTRACT

Phosphorus, a critical environmental pollutant, is effectively removed from stormwater by biofiltration systems, mainly via sedimentation and straining. However, the fate of dissolved inflow phosphorus concentrations in these systems is unknown. Given the growing interest in using biofiltration systems to treat other polluted waters, for example greywater, such an understanding is imperative to optimize designs for successful long-term performance. A mass balance method and a radiotracer, 32P (as H3PO4), were used to investigate the partitioning of phosphorus (concentrations of 2.5-3.5 mg/L, >80% was in dissolved inorganic form) between the various biofilter components at the laboratory scale. Planted columns maintained a phosphorus removal efficiency of >95% over the 15-week study period. Plant storage was found to be the dominant phosphorus sink (64% on average). Approximately 60% of the phosphorus retained in the filter media was recovered in the top 0-6 cm. The 32P tracer results indicate that adsorption is the immediate primary fate of dissolved phosphorus in the system (up to 57% of input P). Plant assimilation occurs at other times, potentially liberating sorption sites for processing of subsequent incoming phosphorus. Plants with high nutrient uptake capacities and the ability to efficiently extract soil phosphorus, for example Carex appressa, are, thus, recommended for use in greywater biofilters.


Subject(s)
Nitrogen , Phosphorus , Filtration , Plants , Water Pollution
7.
Water Res ; 110: 218-232, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28011362

ABSTRACT

Greywater is being increasingly used as an alternative water source to reduce potable water demand and to alleviate pressure on sewerage systems. This paper presents the development of a low energy and low maintenance greywater treatment technology: a living wall system, employing ornamental plants (including vines) grown in a sand filter on a side of a building to treat shower, bath, and washing basin wastewaters. The system can, at the same time, provide critical amenity and micro-climate benefits to our cities. A large scale column study was conducted in Melbourne, Australia, to investigate the following design and operational factors of the proposed system: plant species, saturated zone design, rest period, hydraulic loading rate and pollutant inflow concentration. The results indicate that the use of ornamental species (e.g. Canna lilies, Lonicera japonica, ornamental grape vine) can contribute to pollutant removal. Vegetation selection was found to be particularly important for nutrient removal. While a wider range of tested plant species was effective for nitrogen removal (>80%), phosphorus removal was more variable (-13% to 99%) over the study period, with only a few tested plants being effective - Carex appressa and Canna lilies were the best performers. It was also found that phosphorus removal can be compromised over the longer term as a result of leaching. Excellent suspended solids and organics removal efficiencies can be generally achieved in these systems (>80% for TSS and >90% for BOD) with plants having a relatively small impact. Columns had an acceptable infiltration capacity after one year of operation. When planted with effective species (e.g. Carex appressa and Canna lilies), it is expected that performance will not be significantly affected by longer rest periods and higher pollutant concentrations in the early years of system operation. The results of this study, thus, demonstrate that innovative and aesthetically pleasing living walls can be designed for treatment of greywater at the household scale.


Subject(s)
Filtration , Waste Disposal, Fluid , Nitrogen , Phosphorus , Wastewater
8.
Water Res ; 85: 487-96, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26379204

ABSTRACT

An external electron donor is usually included in wastewater and groundwater treatment systems to enhance nitrate removal through denitrification. The choice of electron donor is critical for both satisfactory denitrification rates and sustainable long-term performance. Electron donors that are waste products are preferred to pure organic chemicals. Different electron donors have been used to treat different water types and little is known as to whether there are any electron donors that are suitable for multiple applications. Seven different carbon rich waste products, including liquid and solid electron donors, were studied in comparison to pure acetate. Batch-scale tests were used to measure their ability to reduce nitrate concentrations in a pure nutrient solution, light greywater, secondary-treated wastewater and tertiary-treated wastewater. The tested electron donors removed oxidised nitrogen (NOx) at varying rates, ranging from 48 mg N/L/d (acetate) to 0.3 mg N/L/d (hardwood). The concentrations of transient nitrite accumulation also varied across the electron donors. The different water types had an influence on NOx removal rates, the extent of which was dependent on the type of electron donor. Overall, the highest rates were recorded in light greywater, followed by the pure nutrient solution and the two partially treated wastewaters. Cotton wool and rice hulls were found to be promising electron donors with good NOx removal rates, lower leachable nutrients and had the least variation in performance across water types.


Subject(s)
Denitrification , Nitrates/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Purification/methods , Acetates/chemistry , Ammonium Compounds/chemistry , Bioreactors , Groundwater/analysis , Nitrites/chemistry , Oxidation-Reduction , Wastewater/analysis
9.
Water Sci Technol ; 69(9): 1961-9, 2014.
Article in English | MEDLINE | ID: mdl-24804674

ABSTRACT

Biofilters have been shown to effectively treat stormwater and achieve nutrient load reduction targets. However, effluent concentrations of nitrogen and phosphorus typically exceed environmental targets for receiving water protection. This study investigates the role of filter media, vegetation and a saturated zone (SZ) in achieving co-optimised nitrogen and phosphorus removal in biofilters. Twenty biofilter columns were monitored over a 12-month period of dosing with semi-synthetic stormwater. The frequency of dosing was altered seasonally to examine the impact of hydrologic variability. Very good nutrient removal (90% total phosphorus, 89% total nitrogen) could be achieved by incorporating vegetation, an SZ and Skye sand, a naturally occurring iron-rich filter medium. This design maintained nutrient removal at or below water quality guideline concentrations throughout the experiment, demonstrating resilience to wetting-drying fluctuations. The results also highlighted the benefit of including an SZ to maintain treatment performance over extended dry periods. These findings represent progress towards designing biofilters which co-optimise nitrogen and phosphorus removal and comply with water quality guidelines.


Subject(s)
Filtration/instrumentation , Nitrogen/chemistry , Phosphorus/chemistry , Water Pollutants, Chemical/chemistry , Bioreactors , Filtration/methods , Plants , Rain , Water Movements , Water Purification
10.
Water Sci Technol ; 69(6): 1312-9, 2014.
Article in English | MEDLINE | ID: mdl-24647199

ABSTRACT

The use of biofilters to remove nitrogen and other pollutants from urban stormwater runoff has demonstrated varied success across laboratory and field studies. Design variables including plant species and use of a saturated zone have large impacts upon performance. A laboratory column study of 22 plant species and designs with varied outlet configuration was conducted across a 1.5-year period to further investigate the mechanisms and influences driving biofilter nitrogen processing. This paper presents outflow concentrations of total nitrogen from two sampling events across both 'wet' and 'dry' frequency dosing, and from sampling across two points in the outflow hydrograph. All plant species were effective under conditions of frequent dosing, but extended drying increased variation between species and highlighted the importance of a saturated zone in maintaining biofilter function. The saturated zone also effectively treated the volume of stormwater stored between inflow events, but this extended detention provided no additional benefit alongside the rapid processing of the highest performing species. Hence, the saturated zone reduced performance differences between plant species, and potentially acts as an 'insurance policy' against poor sub-optimal plant selection. The study shows the importance of biodiversity and inclusion of a saturated zone in protecting against climate variability.


Subject(s)
Nitrogen/isolation & purification , Plants , Water Pollutants, Chemical/isolation & purification , Water Purification , Wetlands , Hydrology , Victoria , Western Australia
11.
PLoS One ; 9(3): e90890, 2014.
Article in English | MEDLINE | ID: mdl-24670377

ABSTRACT

The long-term efficacy of stormwater treatment systems requires continuous pollutant removal without substantial re-release. Hence, the division of incoming pollutants between temporary and permanent removal pathways is fundamental. This is pertinent to nitrogen, a critical water body pollutant, which on a broad level may be assimilated by plants or microbes and temporarily stored, or transformed by bacteria to gaseous forms and permanently lost via denitrification. Biofiltration systems have demonstrated effective removal of nitrogen from urban stormwater runoff, but to date studies have been limited to a 'black-box' approach. The lack of understanding on internal nitrogen processes constrains future design and threatens the reliability of long-term system performance. While nitrogen processes have been thoroughly studied in other environments, including wastewater treatment wetlands, biofiltration systems differ fundamentally in design and the composition and hydrology of stormwater inflows, with intermittent inundation and prolonged dry periods. Two mesocosm experiments were conducted to investigate biofilter nitrogen processes using the stable isotope tracer 15NO3(-) (nitrate) over the course of one inflow event. The immediate partitioning of 15NO3(-) between biotic assimilation and denitrification were investigated for a range of different inflow concentrations and plant species. Assimilation was the primary fate for NO3(-) under typical stormwater concentrations (∼1-2 mg N/L), contributing an average 89-99% of 15NO3(-) processing in biofilter columns containing the most effective plant species, while only 0-3% was denitrified and 0-8% remained in the pore water. Denitrification played a greater role for columns containing less effective species, processing up to 8% of 15NO3(-), and increased further with nitrate loading. This study uniquely applied isotope tracing to biofiltration systems and revealed the dominance of assimilation in stormwater biofilters. The findings raise important questions about nitrogen release upon plant senescence, seasonally and in the long term, which have implications on the management and design of biofiltration systems.


Subject(s)
Cyclonic Storms , Denitrification , Filtration/methods , Nitrogen/isolation & purification , Nitrogen/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Carex Plant/metabolism , Filtration/instrumentation , Nitrates/isolation & purification , Nitrogen Isotopes , Oxygen/analysis , Porosity , Water
12.
Environ Sci Technol ; 46(9): 5100-8, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22497642

ABSTRACT

A large-scale stormwater biofilter column study was conducted to evaluate the impact of design configurations and operating conditions on metal removal for stormwater harvesting and protection of aquatic ecosystems. The following factors were tested over 8 months of operation: vegetation selection (plant species), filter media type, filter media depth, inflow volume (loading rate), and inflow pollutant concentrations. Operational time was also integrated to evaluate treatment performance over time. Vegetation and filter type were found to be significant factors for treatment of metals. A larger filter media depth resulted in increased outflow concentrations of iron, aluminum, chromium, zinc, and lead, likely due to leaching and mobilization of metals within the media. Treatment of all metals except aluminum and iron was generally satisfactory with respect to drinking water quality standards, while all metals met standards for irrigation. However, it was shown that biofilters could be optimized for removal of iron to meet the required drinking water standards. Biofilters were generally shown to be resilient to variations in operating conditions and demonstrated satisfactory removal of metals for stormwater-harvesting purposes.


Subject(s)
Filtration/methods , Metals, Heavy/isolation & purification , Plants , Water Pollutants, Chemical/isolation & purification , Water Purification
13.
J Environ Qual ; 37(5 Suppl): S116-27, 2008.
Article in English | MEDLINE | ID: mdl-18765758

ABSTRACT

The degradation of aquatic ecosystems due to hydrologic and water quality impacts of urbanization, combined with increasing water scarcity, has generated increasing interest in the harvesting of urban storm water. This paper reviews the rationale for integrated storm water treatment and harvesting and synthesizes recent advances and trends and knowledge gaps that limit its application. Storm water harvesting is shown to be a viable alternative water supply and to provide a potential solution to the increases in runoff frequency and peak flows that occur as a result of catchment urbanization. In general, treatment technologies for storm water harvesting have been adapted from existing "water-sensitive urban design" approaches, with limited use of traditional water supply and wastewater technologies. Risk management is often lacking, in part due to a lack of relevant guidance. Reported performance shows variable levels of potable water savings, with cases of up to 100% substitution recorded. Costs of storm water harvesting systems are shown to be inversely related to their scale. The limited cost data show the importance of context, with the harvested water costing more or less than alternative supplies, depending on the cost of the alternative. Limited data exist on environmental benefits, such as reductions in pollutant loads and flow peaks. Implementation of storm water harvesting systems is impeded by inadequate data on risk, lifecycle costs, externalities, and water-energy tradeoffs. Furthermore, retrofit of storm water harvesting into existing urban areas is proving to be a challenge, creating an urgent need for specific technologies for use in retrofit situations.


Subject(s)
Cities , Water Purification/methods , Water Supply , Australia , Water Pollution/prevention & control , Water Purification/economics , Water Supply/economics
14.
Environ Sci Technol ; 42(7): 2535-41, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18504993

ABSTRACT

Stormwater runoff from urban areas has multiple negative hydrologic and ecological impacts for receiving waters. Fine media stormwater filtration systems have the potential to mitigate these effects, through flow attenuation and pollutant removal. This work provides an overall assessment of the hydraulic and pollutant removal behavior of sand- and soil-based stormwater filters at the laboratory scale. The influence of time, cumulative inflow sediment, cumulative water volume, wetting and drying, and compaction on hydraulic capacity was investigated. The results suggested that the primary cause of hydraulic failure was formation of a clogging layer at the filter surface. Loads of sediment and heavy metals were effectively retained; however,the soil-based filters leached nitrogen and phosphorus for the duration of the experimental period. Media pollutant profiles revealed significant accumulation of all pollutants in the top 20% of the filter profile, suggesting that elevated discharges of nutrients was due to leaching of native material, rather than failure to remove incoming pollutants. It is recommended that the top 2-5 cm of the filter surface be scraped off every two years to prevent hydraulic failure; this will also avoid excessive accumulation of heavy metals, which may otherwise have been of concern.


Subject(s)
Filtration/instrumentation , Water Pollutants/isolation & purification , Equipment Design
15.
Water Res ; 41(12): 2513-24, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17475303

ABSTRACT

Stormwater infiltration systems are widely used to address the flow and water quality impacts of urbanization. However, their pollutant removal performance is uncertain, with respect to varying filter depth, and over time. Seven simulation experiments were conducted on a laboratory-scale gravel infiltration system to test the pollutant removal under a range of water level regimes, including both constant and variable water levels. Gravel filters were found to be very effective for removal of sediment and heavy metals under all water level regimes, even as the system clogged over time. Despite the sediment particle size distribution being much smaller than the filter media pore size, sediment and its associated pollutants were effectively trapped in the top of the gravel filter, even when the water level was allowed to vary. A media depth of 0.5 m was found to achieve adequate pollutant removal. Breakthrough of pollutants may not be of concern, since physical clogging occurred first (thus determining the lifespan of the filter media). However, gravel filters were less effective at nutrient removal, particularly for dissolved nutrients.


Subject(s)
Rain , Water Purification/methods , Copper/analysis , Filtration , Geologic Sediments/analysis , Lead/analysis , Nitrogen/analysis , Nitrogen Oxides/analysis , Phosphorus/analysis , Quaternary Ammonium Compounds/analysis , Water Pollutants/analysis , Zinc/analysis
16.
J Environ Manage ; 79(1): 102-13, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16256264

ABSTRACT

With the use of water approaching, and in some cases exceeding, the limits of sustainability in many locations, there is an increasing recognition of the need to utilise stormwater for non-potable requirements, thus reducing the demand on potable sources. This paper presents a review of Australian stormwater treatment and recycling practices as well as a discussion of key lessons and identified knowledge gaps. Where possible, recommendations for overcoming these knowledge gaps are given. The review of existing stormwater recycling systems focussed primarily on the recycling of general urban runoff (runoff generated from all urban surfaces) for non-potable purposes. Regulations and guidelines specific to stormwater recycling need to be developed to facilitate effective design of such systems, and to minimise risks of failure. There is a clear need for the development of innovative techniques for the collection, treatment and storage of stormwater. Existing stormwater recycling practice is far ahead of research, in that there are no technologies designed specifically for stormwater recycling. Instead, technologies designed for general stormwater pollution control are frequently utilised, which do not guarantee the necessary reliability of treatment. Performance modelling for evaluation purposes also needs further research, so that industry can objectively assess alternative approaches. Just as many aspects of these issues may have impeded adoption of stormwater, another impediment to adoption has been the lack of a practical and widely accepted method for assessing the many financial, social and ecological costs and benefits of stormwater recycling projects against traditional alternatives. Such triple-bottom-line assessment methodologies need to be trialled on stormwater recycling projects. If the costs and benefits of recycling systems can be shown to compare favourably with the costs and benefits of conventional practices this will provide an incentive to overcome other obstacles to widespread adoption of stormwater recycling.


Subject(s)
Conservation of Natural Resources , Rain , Waste Management , Water Pollution , Water Supply , Australia , Cities , Cost-Benefit Analysis , Environmental Monitoring , Risk Assessment , Waste Management/economics , Waste Management/methods , Water Pollution/economics , Water Pollution/prevention & control
17.
Environ Manage ; 34(1): 112-24, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15383877

ABSTRACT

Effective water quality management of streams in urbanized basins requires identification of the elements of urbanization that contribute most to pollutant concentrations and loads. Drainage connection (the proportion of impervious area directly connected to streams by pipes or lined drains) is proposed as a variable explaining variance in the generally weak relationships between pollutant concentrations and imperviousness. Fifteen small streams draining independent subbasins east of Melbourne, Australia, were sampled for a suite of water quality variables. Geometric mean concentrations of all variables were calculated separately for baseflow and storm events, and these, together with estimates of runoff derived from a rainfall-runoff model, were used to estimate mean annual loads. Patterns of concentrations among the streams were assessed against patterns of imperviousness, drainage connection, unsealed (unpaved) road density, elevation, longitude (all of which were intercorrelated), septic tank density, and basin area. Baseflow and storm event concentrations of dissolved organic carbon (DOC), filterable reactive phosphorus (FRP), total phosphorus (TP) and ammonium, along with electrical conductivity (EC), all increased with imperviousness and its correlates. Hierarchical partitioning showed that DOC, EC, FRP, and storm event TP were independently correlated with drainage connection more strongly than could be explained by chance. Neither pH nor total suspended solids concentrations were strongly correlated with any basin variable. Oxidized and total nitrogen concentrations were most strongly explained by septic tank density. Loads of all variables were strongly correlated with imperviousness and connection. Priority should be given to low-impact urban design, which primarily involves reducing drainage connection, to minimize urbanization-related pollutant impacts on streams.


Subject(s)
Environment Design , Water Movements , Water Pollutants/analysis , Carbon/analysis , Cities , Engineering , Environmental Monitoring , Nitrogen/analysis , Phosphorus/analysis , Quality Control , Rivers , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...