Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1854(6): 632-40, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25219547

ABSTRACT

The prostate-specific G-protein-coupled receptor 1 (PSGR1) is an olfactory receptor specifically expressed in the prostate gland. PSGR1 expression is elevated both in benign prostatic hyperplasia tissue and in prostate cancer. Stimulation of PSGR1 by the odorant ß-ionone leads to an increase in the intracellular Ca(2+) concentration, activation of mitogen-activated protein (MAP) kinases and a decrease in prostate cancer cell proliferation. To further extend our knowledge about PSGR1 signaling in prostate cancer cells, we performed a quantitative phosphoproteomics study using stable isotope labeling by amino acids in cell culture and mass spectrometry. We report 51 differentially regulated phosphorylation sites in 24 proteins with functions in cytoskeletal remodeling, signaling and ion transport. Activation of PSGR1 evoked an increase in intracellular pH mediated by the sodium/hydrogen exchanger NHE1. Furthermore, we report the protein tyrosine kinase Pyk2 as a central effector of PSGR1 signaling cascades in LNCaP cells. Our data show that phosphorylation of p38 MAP kinase is triggered by Pyk2. In addition, we confirmed dephosphorylation of the tumor suppressor protein N-myc downstream regulated gene 1 (NDRG1) at Ser330 downstream of Pyk2. Since NDRG1 impacts oncogenic signaling pathways interfering with tumor progression, we suggest that the Pyk2-NDRG1 axis is possibly involved in conveying the anti-proliferative effect of ß-ionone in prostate cancer cells. This article is part of a Special Issue entitled: Medical Proteomics.


Subject(s)
Focal Adhesion Kinase 2/metabolism , MAP Kinase Signaling System , Neoplasm Proteins/metabolism , Phosphoproteins/metabolism , Prostatic Neoplasms/metabolism , Receptors, Odorant/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Focal Adhesion Kinase 2/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Neoplasm Proteins/genetics , Norisoprenoids/pharmacology , Phosphoproteins/genetics , Phosphorylation/drug effects , Phosphorylation/genetics , Prostatic Neoplasms/genetics , Receptors, Odorant/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Mol Cell Proteomics ; 13(7): 1828-43, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24748648

ABSTRACT

In the nasal cavity, the nonmotile cilium of olfactory sensory neurons (OSNs) constitutes the chemosensory interface between the ambient environment and the brain. The unique sensory organelle facilitates odor detection for which it includes all necessary components of initial and downstream olfactory signal transduction. In addition to its function in olfaction, a more universal role in modulating different signaling pathways is implicated, for example, in neurogenesis, apoptosis, and neural regeneration. To further extend our knowledge about this multifunctional signaling organelle, it is of high importance to establish a most detailed proteome map of the ciliary membrane compartment down to the level of transmembrane receptors. We detached cilia from mouse olfactory epithelia via Ca(2+)/K(+) shock followed by the enrichment of ciliary membrane proteins at alkaline pH, and we identified a total of 4,403 proteins by gel-based and gel-free methods in conjunction with high resolution LC/MS. This study is the first to report the detection of 62 native olfactory receptor proteins and to provide evidence for their heterogeneous expression at the protein level. Quantitative data evaluation revealed four ciliary membrane-associated candidate proteins (the annexins ANXA1, ANXA2, ANXA5, and S100A5) with a suggested function in the regulation of olfactory signal transduction, and their presence in ciliary structures was confirmed by immunohistochemistry. Moreover, we corroborated the ciliary localization of the potassium-dependent Na(+)/Ca(2+) exchanger (NCKX) 4 and the plasma membrane Ca(2+)-ATPase 1 (PMCA1) involved in olfactory signal termination, and we detected for the first time NCKX2 in olfactory cilia. Through comparison with transcriptome data specific for mature, ciliated OSNs, we finally delineated the membrane ciliome of OSNs. The membrane proteome of olfactory cilia established here is the most complete today, thus allowing us to pave new avenues for the study of diverse molecular functions and signaling pathways in and out of olfactory cilia and thus to advance our understanding of the biology of sensory organelles in general.


Subject(s)
Nasal Cavity/innervation , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/analysis , Smell/physiology , Animals , Annexin A1/metabolism , Annexin A2/metabolism , Annexin A5/metabolism , Antiporters/metabolism , Cilia , Gene Expression Profiling , Male , Mice , Odorants , Plasma Membrane Calcium-Transporting ATPases/metabolism , Proteome/analysis , Receptors, Odorant/biosynthesis , S100 Proteins/metabolism , Signal Transduction/physiology , Sodium-Calcium Exchanger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...