Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 31(10): 105302, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30557870

ABSTRACT

Using a multi-orbital tight-binding model, we have studied the edge states of zigzag silicene, germanene, and stanene nanoribbons (ZSiNRs, ZGeNRs and ZSnNRs, respectively) in the presence of the Coulomb interaction and a vertical electric field. The resulting edge states have non-linear energy dispersions due to multi-orbital effects, and the nanoribbons show induced magnetization at the edges. Owing to this non-linear dispersion, ZSiNRs, ZGeNRs and ZSnNRs may not provide superior performance in field effect transistors, as has been proposed from single-orbital tight-binding model calculations. We propose an effective low-energy model that describes the edge states of ZSiNRs, ZGeNRs, and ZSnNRs. We demonstrate that the edge states of ZGeNR and ZSnNR show anti-crossing of bands with opposite spins, even if only out-of-plane edge magnetization is present. The ability to tune the spin polarizations of the edge states by applying an electric field points to future opportunities to fabricate silicene, germanene and stanene nanoribbons as spintronics devices.

2.
J Phys Condens Matter ; 29(11): 115302, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28067636

ABSTRACT

We investigate the energy dispersion of the edge states in zigzag silicene, germanene and stanene nanoribbons with and without hydrogen termination based on a multi-orbital tight-binding model. Since the low buckled structures are crucial for these materials, both the π and σ orbitals have a strong influence on the edge states, different from the case for graphene nanoribbons. The obtained dispersion of helical edge states is nonlinear, similar to that obtained by first-principles calculations. On the other hand, the dispersion derived from the single-orbital tight-binding model is always linear. Therefore, we find that the non-linearity comes from the multi-orbital effects, and accurate results cannot be obtained by the single-orbital model but can be obtained by the multi-orbital tight-binding model. We show that the multi-orbital model is essential for correctly understanding the dispersion of the edge states in tetragen nanoribbons with a low buckled geometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...