Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Sci Rep ; 14(1): 9991, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693202

ABSTRACT

Endothelial cells (ECs) have essential roles in cardiac tissue repair after myocardial infarction (MI). To establish stage-specific and long-term effects of the ischemic injury on cardiac ECs, we analyzed their transcriptome at landmark time points after MI in mice. We found that early EC response at Day 2 post-MI centered on metabolic changes, acquisition of proinflammatory phenotypes, initiation of the S phase of cell cycle, and activation of stress-response pathways, followed by progression to mitosis (M/G2 phase) and acquisition of proangiogenic and mesenchymal properties during scar formation at Day 7. In contrast, genes involved in vascular physiology and maintenance of vascular tone were suppressed. Importantly, ECs did not return to pre-injury phenotypes after repair has been completed but maintained inflammatory, fibrotic and thrombotic characteristics and lost circadian rhythmicity. We discovered that the highest induced transcript is the mammalian-specific Sh2d5 gene that promoted migration and invasion of ECs through Rac1 GTPase. Our results revealed a synchronized, temporal activation of disease phenotypes, metabolic pathways, and proliferation in quiescent ECs after MI, indicating that precisely-timed interventions are necessary to optimize cardiac tissue repair and improve outcomes. Furthermore, long-term effects of acute ischemic injury on ECs may contribute to vascular dysfunction and development of heart failure.


Subject(s)
Endothelial Cells , Gene Expression Profiling , Myocardial Infarction , Animals , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Transcriptome , Male , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Disease Models, Animal , Cell Proliferation , Cell Movement/genetics
2.
Physiol Rep ; 10(7): e15212, 2022 04.
Article in English | MEDLINE | ID: mdl-35403369

ABSTRACT

Type 2 diabetes (T2D) affects >30 million Americans and nearly 70% of individuals with T2D will die from cardiovascular disease (CVD). Circulating levels of the inflammatory signaling lipid, prostaglandin E2 (PGE2 ), are elevated in the setting of obesity and T2D and are associated with decreased cardiac function. The EP3 and EP4 PGE2 receptors have opposing actions in several tissues, including the heart: overexpression of EP3 in cardiomyocytes impairs function, while EP4 overexpression improves function. Here we performed complementary studies in vitro with isolated cardiomyocytes and in vivo using db/db mice, a model of T2D, to analyze the effects of EP3 inhibition or EP4 activation on cardiac function. Using echocardiography, we found that 2 weeks of systemic treatment of db/db mice with 20 mg/kg of EP3 antagonist, beginning at 6 weeks of age, improves ejection fraction and fractional shortening (with no effect on heart rate). We further show that either EP3 blockade or EP4 activation enhances contractility and calcium cycling in isolated mouse cardiomyocytes cultured in both normal and high glucose. Thus, peak [Ca2+ ]I transient amplitude was increased, while time to peak [Ca2+ ]I and [Ca2+ ]I decay were decreased. These data suggest that modulation of EP3 and EP4 activity has beneficial effects on cardiomyocyte contractility and overall heart function.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Animals , Diabetes Mellitus, Type 2/drug therapy , Dinoprostone/pharmacology , Humans , Mice , Myocytes, Cardiac , Receptors, Prostaglandin E, EP3 Subtype , Receptors, Prostaglandin E, EP4 Subtype
3.
Circulation ; 143(13): 1317-1330, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33474971

ABSTRACT

BACKGROUND: Myocardial infarction (MI) induces an intense injury response that ultimately generates a collagen-dominated scar. Although required to prevent ventricular rupture, the fibrotic process is often sustained in a manner detrimental to optimal recovery. Cardiac myofibroblasts are the cells tasked with depositing and remodeling collagen and are a prime target to limit the fibrotic process after MI. Serotonin 2B receptor (5-HT2B) signaling has been shown to be harmful in a variety of cardiopulmonary pathologies and could play an important role in mediating scar formation after MI. METHODS: We used 2 pharmacological antagonists to explore the effect of 5-HT2B inhibition on outcomes after MI and characterized the histological and microstructural changes involved in tissue remodeling. Inducible 5-HT2B ablation driven by Tcf21MCM and PostnMCM was used to evaluate resident cardiac fibroblast- and myofibroblast-specific contributions of 5-HT2B, respectively. RNA sequencing was used to motivate subsequent in vitro analyses to explore cardiac fibroblast phenotype. RESULTS: 5-HT2B antagonism preserved cardiac structure and function by facilitating a less fibrotic scar, indicated by decreased scar thickness and decreased border zone area. 5-HT2B antagonism resulted in collagen fiber redistribution to thinner collagen fibers that were more anisotropic, enhancing left ventricular contractility, whereas fibrotic tissue stiffness was decreased, limiting the hypertrophic response of uninjured cardiomyocytes. Using a tamoxifen-inducible Cre, we ablated 5-HT2B from Tcf21-lineage resident cardiac fibroblasts and saw similar improvements to the pharmacological approach. Tamoxifen-inducible Cre-mediated ablation of 5-HT2B after onset of injury in Postn-lineage myofibroblasts also improved cardiac outcomes. RNA sequencing and subsequent in vitro analyses corroborate a decrease in fibroblast proliferation, migration, and remodeling capabilities through alterations in Dnajb4 expression and Src phosphorylation. CONCLUSIONS: Together, our findings illustrate that 5-HT2B expression in either cardiac fibroblasts or activated myofibroblasts directly contributes to excessive scar formation, resulting in adverse remodeling and impaired cardiac function after MI.


Subject(s)
Fibrosis/drug therapy , Myocardial Infarction/drug therapy , Myocardial Infarction/physiopathology , Serotonin 5-HT2 Receptor Antagonists/therapeutic use , Animals , Female , Humans , Mice , Mice, Knockout , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Signal Transduction
4.
Am J Physiol Cell Physiol ; 320(1): C119-C131, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33085496

ABSTRACT

The well-described Wnt inhibitor Dickkopf-1 (DKK1) plays a role in angiogenesis as well as in regulation of growth factor signaling cascades in pulmonary remodeling associated with chronic lung diseases (CLDs) including emphysema and fibrosis. However, the specific mechanisms by which DKK1 influences mesenchymal vascular progenitor cells (MVPCs), microvascular endothelial cells (MVECs), and smooth muscle cells (SMCs) within the microvascular niche have not been elucidated. In this study, we show that knockdown of DKK1 in Abcg2pos lung mouse adult tissue resident MVPCs alters lung stiffness, parenchymal collagen deposition, microvessel muscularization and density as well as loss of tissue structure in response to hypoxia exposure. To complement the in vivo mouse modeling, we also identified cell- or disease-specific responses to DKK1, in primary lung chronic obstructive pulmonary disease (COPD) MVPCs, COPD MVECs, and SMCs, supporting a paradoxical disease-specific response of cells to well-characterized factors. Cell responses to DKK1 were dose dependent and correlated with varying expressions of the DKK1 receptor, CKAP4. These data demonstrate that DKK1 expression is necessary to maintain the microvascular niche whereas its effects are context specific. They also highlight DKK1 as a regulatory candidate to understand the role of Wnt and DKK1 signaling between cells of the microvascular niche during tissue homeostasis and during the development of chronic lung diseases.


Subject(s)
Endothelial Progenitor Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Lung/blood supply , Mesenchymal Stem Cells/metabolism , Neovascularization, Physiologic , Stem Cell Niche , Wnt Signaling Pathway , beta Catenin/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Animals , Cell Hypoxia , Cell Lineage , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/metabolism , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Phenotype , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Vascular Remodeling , beta Catenin/genetics
5.
Int J Mol Sci ; 21(20)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050457

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a neuronal growth and survival factor that harbors cardioprotective qualities that may attenuate dilated cardiomyopathy. In ~30% of the population, BDNF has a common, nonsynonymous single nucleotide polymorphism rs6265 (Val66Met), which might be correlated with increased risk of cardiovascular events. We previously showed that BDNF correlates with better cardiac function in Duchenne muscular dystrophy (DMD) patients. However, the effect of the Val66Met polymorphism on cardiac function has not been determined. The goal of the current study was to determine the effects of rs6265 on BDNF biomarker suitability and DMD cardiac functions more generally. We assessed cardiovascular and skeletal muscle function in human DMD patients segregated by polymorphic allele. We also compared echocardiographic, electrophysiologic, and cardiomyocyte contractility in C57/BL-6 wild-type mice with rs6265 polymorphism and in mdx/mTR (mDMD) mouse model of DMD. In human DMD patients, plasma BDNF levels had a positive correlation with left ventricular function, opposite to that seen in rs6265 carriers. There was also a substantial decrease in skeletal muscle function in carriers compared to the Val homozygotes. Surprisingly, the opposite was true when cardiac function of DMD carriers and non-carriers were compared. On the other hand, Val66Met wild-type mice had only subtle functional differences at baseline but significantly decreased cardiomyocyte contractility. Our results indicate that the Val66Met polymorphism alters myocyte contractility, conferring worse skeletal muscle function but better cardiac function in DMD patients. Moreover, these results suggest a mechanism for the relative preservation of cardiac tissues compared to skeletal muscle in DMD patients and underscores the complexity of BDNF signaling in response to mechanical workload.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Cardiomyopathy, Dilated/etiology , Cardiomyopathy, Dilated/metabolism , Genetic Predisposition to Disease , Myocytes, Cardiac/metabolism , Polymorphism, Single Nucleotide , Animals , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/physiopathology , Disease Models, Animal , Echocardiography , Electrocardiography , Gene Expression Regulation , Genetic Association Studies , Humans , Mice , Mice, Transgenic , Myocardial Contraction
6.
JCI Insight ; 4(18)2019 09 19.
Article in English | MEDLINE | ID: mdl-31534054

ABSTRACT

Over one million Americans experience myocardial infarction (MI) annually, and the resulting scar and subsequent cardiac fibrosis gives rise to heart failure. A specialized cell-cell adhesion protein, cadherin-11 (CDH11), contributes to inflammation and fibrosis in rheumatoid arthritis, pulmonary fibrosis, and aortic valve calcification but has not been studied in myocardium after MI. MI was induced by ligation of the left anterior descending artery in mice with either heterozygous or homozygous knockout of CDH11, wild-type mice receiving bone marrow transplants from Cdh11-deficient animals, and wild-type mice treated with a functional blocking antibody against CDH11 (SYN0012). Flow cytometry revealed significant CDH11 expression in noncardiomyocyte cells after MI. Animals given SYN0012 had improved cardiac function, as measured by echocardiogram, reduced tissue remodeling, and altered transcription of inflammatory and proangiogenic genes. Targeting CDH11 reduced bone marrow-derived myeloid cells and increased proangiogenic cells in the heart 3 days after MI. Cardiac fibroblast and macrophage interactions increased IL-6 secretion in vitro. Our findings suggest that CDH11-expressing cells contribute to inflammation-driven fibrotic remodeling after MI and that targeting CDH11 with a blocking antibody improves outcomes by altering recruitment of bone marrow-derived cells, limiting the macrophage-induced expression of IL-6 by fibroblasts and promoting vascularization.


Subject(s)
Cadherins/metabolism , Myocardial Infarction/complications , Myocardium/pathology , Ventricular Remodeling/drug effects , Animals , Bone Marrow Transplantation , Cadherins/antagonists & inhibitors , Cadherins/genetics , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Adhesion/immunology , Disease Models, Animal , Echocardiography , Fibrosis , Heart Failure/etiology , Heart Failure/pathology , Heart Failure/prevention & control , Heart Ventricles/diagnostic imaging , Heart Ventricles/drug effects , Heart Ventricles/immunology , Heart Ventricles/pathology , Humans , Male , Mice , Mice, Knockout , Myeloid Cells/immunology , Myocardial Infarction/diagnosis , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardium/immunology , Ventricular Remodeling/immunology
7.
Dis Model Mech ; 12(8)2019 08 20.
Article in English | MEDLINE | ID: mdl-31439575

ABSTRACT

In the decade since Disease Models & Mechanisms was launched, the emergence of Big Data as the main foundation of biological information is having a profound effect on how we do research and it has provoked some interesting questions. Is Big Data exploration replacing hypothesis-driven basic research? And, to what extent is disease modeling in the laboratory still relevant to medical research? Recent examples of synergistic approaches utilizing animal modeling and electronic medical records mining show that combining efforts between disease models and clinical datasets can uncover not only disease etiologies, but also novel molecular and cellular mechanisms linked to gene function.


Subject(s)
Periodicals as Topic , Animals , Big Data , Disease Models, Animal , Phenotype
8.
Exp Biol Med (Maywood) ; 244(2): 147-156, 2019 02.
Article in English | MEDLINE | ID: mdl-30732465

ABSTRACT

IMPACT STATEMENT: By compiling findings from recent studies, this review will garner novel insight on the dynamic and complex role of BMP signaling in diseases of inflammation, highlighting the specific roles played by both individual ligands and endogenous antagonists. Ultimately, this summary will help inform the high therapeutic value of targeting this pathway for modulating diseases of inflammation.


Subject(s)
Bone Morphogenetic Proteins/physiology , Inflammation/metabolism , Anemia/metabolism , Anemia/physiopathology , Arthritis/metabolism , Arthritis/physiopathology , Bone Morphogenetic Proteins/metabolism , Embryonic Development , Fibrosis/metabolism , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Signal Transduction , Vascular Calcification/metabolism
9.
Circ Res ; 122(3): 479-488, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29208679

ABSTRACT

RATIONALE: The TIME trial (Timing in Myocardial Infarction Evaluation) was the first cell therapy trial sufficiently powered to determine if timing of cell delivery after ST-segment-elevation myocardial infarction affects recovery of left ventricular (LV) function. OBJECTIVE: To report the 2-year clinical and cardiac magnetic resonance imaging results and their modification by microvascular obstruction. METHODS AND RESULTS: TIME was a randomized, double-blind, placebo-controlled trial comparing 150 million bone marrow mononuclear cells versus placebo in 120 patients with anterior ST-segment-elevation myocardial infarctions resulting in LV dysfunction. Primary end points included changes in global (LV ejection fraction) and regional (infarct and border zone) function. Secondary end points included changes in LV volumes, infarct size, and major adverse cardiac events. Here, we analyzed the continued trajectory of these measures out to 2 years and the influence of microvascular obstruction present at baseline on these long-term outcomes. At 2 years (n=85), LV ejection fraction was similar in the bone marrow mononuclear cells (48.7%) and placebo groups (51.6%) with no difference in regional LV function. Infarct size and LV mass decreased ≥30% in each group at 6 months and declined gradually to 2 years. LV volumes increased ≈10% at 6 months and remained stable to 2 years. Microvascular obstruction was present in 48 patients at baseline and was associated with significantly larger infarct size (56.5 versus 36.2 g), greater adverse LV remodeling, and marked reduction in LV ejection fraction recovery (0.2% versus 6.2%). CONCLUSIONS: In one of the longest serial cardiac magnetic resonance imaging analyses of patients with large anterior ST-segment-elevation myocardial infarctions, bone marrow mononuclear cells administration did not improve recovery of LV function over 2 years. Microvascular obstruction was associated with reduced recovery of LV function, greater adverse LV remodeling, and more device implantations. The use of cardiac magnetic resonance imaging leads to greater dropout of patients over time because of device implantation in patients with more severe LV dysfunction resulting in overestimation of clinical stability of the cohort. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00684021.


Subject(s)
Bone Marrow Transplantation/methods , ST Elevation Myocardial Infarction/therapy , Ventricular Dysfunction, Left/therapy , Adult , Aged , Double-Blind Method , Female , Follow-Up Studies , Heart Ventricles/pathology , Humans , Magnetic Resonance Imaging , Male , Microcirculation , Middle Aged , Organ Size , ST Elevation Myocardial Infarction/complications , ST Elevation Myocardial Infarction/pathology , Stroke Volume , Time Factors , Ventricular Dysfunction, Left/etiology
10.
Curr Cardiol Rep ; 19(6): 51, 2017 06.
Article in English | MEDLINE | ID: mdl-28432663

ABSTRACT

PURPOSE OF REVIEW: This review aims to summarize recent findings regarding the plasticity and fate switching among somatic and progenitor cells residing in the vascular wall of blood vessels in health and disease. RECENT FINDINGS: Cell lineage tracing methods have identified multiple origins of stem cells, macrophages, and matrix-producing cells that become mobilized after acute or chronic injury of cardiovascular tissues. These studies also revealed that in the disease environment, resident somatic cells become plastic, thereby changing their stereotypical identities to adopt proinflammatory and profibrotic phenotypes. Currently, the functional significance of this heterogeneity among reparative cells is unknown. Furthermore, mechanisms that control cellular plasticity and fate decisions in the disease environment are poorly understood. Cardiovascular diseases are responsible for the majority of deaths worldwide. From a therapeutic perspective, these novel discoveries may identify new targets to improve the repair and regeneration of the cardiovascular system.


Subject(s)
Blood Vessels/cytology , Blood Vessels/physiology , Cell Plasticity , Cardiovascular Diseases/therapy , Cell Differentiation , Cell Lineage , Epithelial-Mesenchymal Transition , Homeostasis , Humans , Stem Cells/cytology , Stem Cells/physiology
11.
Sci Data ; 4: 170030, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28350385

ABSTRACT

The use of induced pluripotent stem cells (iPSC) derived from independent patients and sources holds considerable promise to improve the understanding of development and disease. However, optimized use of iPSC depends on our ability to develop methods to efficiently qualify cell lines and protocols, monitor genetic stability, and evaluate self-renewal and differentiation potential. To accomplish these goals, 57 stem cell lines from 10 laboratories were differentiated to 7 different states, resulting in 248 analyzed samples. Cell lines were differentiated and characterized at a central laboratory using standardized cell culture methodologies, protocols, and metadata descriptors. Stem cell and derived differentiated lines were characterized using RNA-seq, miRNA-seq, copy number arrays, DNA methylation arrays, flow cytometry, and molecular histology. All materials, including raw data, metadata, analysis and processing code, and methodological and provenance documentation are publicly available for re-use and interactive exploration at https://www.synapse.org/pcbc. The goal is to provide data that can improve our ability to robustly and reproducibly use human pluripotent stem cells to understand development and disease.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Animals , Cell Culture Techniques , Humans
12.
Stem Cells Transl Med ; 6(3): 992-1005, 2017 03.
Article in English | MEDLINE | ID: mdl-28297566

ABSTRACT

Accumulation of myofibroblasts is a hallmark of renal fibrosis. A significant proportion of myofibroblasts has been reported to originate via endothelial-mesenchymal transition. We initially hypothesized that exposing myofibroblasts to the extract of endothelial progenitor cells (EPCs) could reverse this transition. Indeed, in vitro treatment of transforming growth factor-ß1 (TGF-ß1)-activated fibroblasts with EPC extract prevented expression of α-smooth muscle actin (α-SMA); however, it did not enhance expression of endothelial markers. In two distinct models of renal fibrosis-unilateral ureteral obstruction and chronic phase of folic acid-induced nephropathy-subcapsular injection of EPC extract to the kidney prevented and reversed accumulation of α-SMA-positive myofibroblasts and reduced fibrosis. Screening the composition of EPC extract for cytokines revealed that it is enriched in leukemia inhibitory factor (LIF) and vascular endothelial growth factor. Only LIF was capable of reducing fibroblast-to-myofibroblast transition of TGF-ß1-activated fibroblasts. In vivo subcapsular administration of LIF reduced the number of myofibroblasts and improved the density of peritubular capillaries; however, it did not reduce the degree of fibrosis. A receptor-independent ligand for the gp130/STAT3 pathway, hyper-interleukin-6 (hyper-IL-6), not only induced a robust downstream increase in pluripotency factors Nanog and c-Myc but also exhibited a powerful antifibrotic effect. In conclusion, EPC extract prevented and reversed fibroblast-to-myofibroblast transition and renal fibrosis. The component of EPC extract, LIF, was capable of preventing development of the contractile phenotype of activated fibroblasts but did not eliminate TGF-ß1-induced collagen synthesis in cultured fibroblasts and models of renal fibrosis, whereas a receptor-independent gp130/STAT3 agonist, hyper-IL-6, prevented fibrosis. In summary, these studies, through the evolution from EPC extract to LIF and then to hyper-IL-6, demonstrate the instructive role of microenvironmental cues and may provide in the future a facile strategy to prevent and reverse renal fibrosis. Stem Cells Translational Medicine 2017;6:992-1005.


Subject(s)
Cellular Microenvironment , Kidney/pathology , 3T3 Cells , Animals , Cellular Microenvironment/drug effects , Chemokines/metabolism , Cytokine Receptor gp130/metabolism , Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/metabolism , Fibroblasts/cytology , Fibroblasts/drug effects , Fibrosis , Interleukin-6/pharmacology , Leukemia Inhibitory Factor/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myofibroblasts/cytology , Myofibroblasts/drug effects , Phosphorylation/drug effects , STAT3 Transcription Factor/metabolism , Transcription Factors/metabolism , Ureteral Obstruction/pathology
13.
Stem Cells Dev ; 26(9): 678-693, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28125926

ABSTRACT

Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling.


Subject(s)
Bone Morphogenetic Proteins/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Induced Pluripotent Stem Cells/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Stem Cells/metabolism , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/pharmacology , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Cells, Cultured , Cytokines , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Myocardium/cytology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Organogenesis/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Stem Cells/cytology , Stem Cells/drug effects
14.
Stem Cell Reports ; 7(1): 110-25, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27293150

ABSTRACT

The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community.


Subject(s)
Cell Differentiation/genetics , DNA Methylation/genetics , Genome, Human , Induced Pluripotent Stem Cells , Cellular Reprogramming , Gene Expression/genetics , Genomics , Humans , Stem Cells/metabolism
15.
Circ Res ; 119(3): 434-49, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27283840

ABSTRACT

RATIONALE: We have recently shown that the bone morphogenetic protein (BMP) antagonist Gremlin 2 (Grem2) is required for early cardiac development and cardiomyocyte differentiation. Our initial studies discovered that Grem2 is strongly induced in the adult heart after experimental myocardial infarction (MI). However, the function of Grem2 and BMP-signaling inhibitors after cardiac injury is currently unknown. OBJECTIVE: To investigate the role of Grem2 during cardiac repair and assess its potential to improve ventricular function after injury. METHODS AND RESULTS: Our data show that Grem2 is transiently induced after MI in peri-infarct area cardiomyocytes during the inflammatory phase of cardiac tissue repair. By engineering loss- (Grem2(-/-)) and gain- (TG(Grem2)) of-Grem2-function mice, we discovered that Grem2 controls the magnitude of the inflammatory response and limits infiltration of inflammatory cells in peri-infarct ventricular tissue, improving cardiac function. Excessive inflammation in Grem2(-/-) mice after MI was because of overactivation of canonical BMP signaling, as proven by the rescue of the inflammatory phenotype through administration of the canonical BMP inhibitor, DMH1. Furthermore, intraperitoneal administration of Grem2 protein in wild-type mice was sufficient to reduce inflammation after MI. Cellular analyses showed that BMP2 acts with TNFα to induce expression of proinflammatory proteins in endothelial cells and promote adhesion of leukocytes, whereas Grem2 specifically inhibits the BMP2 effect. CONCLUSIONS: Our results indicate that Grem2 provides a molecular barrier that controls the magnitude and extent of inflammatory cell infiltration by suppressing canonical BMP signaling, thereby providing a novel mechanism for limiting the adverse effects of excessive inflammation after MI.


Subject(s)
Bone Morphogenetic Protein 2/antagonists & inhibitors , Bone Morphogenetic Protein 2/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/prevention & control , Proteins/metabolism , Animals , Cells, Cultured , Cytokines , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Humans , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use
16.
J Vis Exp ; (109)2016 Mar 10.
Article in English | MEDLINE | ID: mdl-27023256

ABSTRACT

Protocols for generating populations of cardiomyocytes from pluripotent stem cells have been developed, but these generally yield cells of mixed phenotypes. Researchers interested in pursuing studies involving specific myocyte subtypes require a more directed differentiation approach. By treating mouse embryonic stem (ES) cells with Grem2, a secreted BMP antagonist that is necessary for atrial chamber formation in vivo, a large number of cardiac cells with an atrial phenotype can be generated. Use of the engineered Myh6-DSRed-Nuc pluripotent stem cell line allows for identification, selection, and purification of cardiomyocytes. In this protocol embryoid bodies are generated from Myh6-DSRed-Nuc cells using the hanging drop method and kept in suspension until differentiation day 4 (d4). At d4 cells are treated with Grem2 and plated onto gelatin coated plates. Between d8-d10 large contracting areas are observed in the cultures and continue to expand and mature through d14. Molecular, histological and electrophysiogical analyses indicate cells in Grem2-treated cells acquire atrial-like characteristics providing an in vitro model to study the biology of atrial cardiomyocytes and their response to various pharmacological agents.


Subject(s)
Cellular Reprogramming Techniques/methods , Myocytes, Cardiac/cytology , Pluripotent Stem Cells/cytology , Animals , Cell Differentiation , Cytokines , Heart Atria/cytology , Mice , Myocytes, Cardiac/drug effects , Pluripotent Stem Cells/drug effects , Proteins/pharmacology
17.
Hypertension ; 67(2): 461-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26693821

ABSTRACT

Various hypertensive stimuli lead to exuberant adventitial collagen deposition in large arteries, exacerbating blood pressure elevation and end-organ damage. Collagen production is generally attributed to resident fibroblasts; however, other cells, including resident and bone marrow-derived stem cell antigen positive (Sca-1(+)) cells and endothelial and vascular smooth muscle cells, can produce collagen and contribute to vascular stiffening. Using flow cytometry and immunofluorescence, we found that adventitial Sca-1(+) progenitor cells begin to produce collagen and acquire a fibroblast-like phenotype in hypertension. We also found that bone marrow-derived cells represent more than half of the matrix-producing cells in hypertension, and that one-third of these are Sca-1(+). Cell sorting and lineage-tracing studies showed that cells of endothelial origin contribute to no more than one fourth of adventitial collagen I(+) cells, whereas those of vascular smooth muscle lineage do not contribute. Our findings indicate that Sca-1(+) progenitor cells and bone marrow-derived infiltrating fibrocytes are major sources of arterial fibrosis in hypertension. Endothelial to mesenchymal transition likely also contributes, albeit to a lesser extent and pre-existing resident fibroblasts represent a minority of aortic collagen-producing cells in hypertension. This study shows that vascular stiffening represents a complex process involving recruitment and transformation of multiple cells types that ultimately elaborate adventitial extracellular matrix.


Subject(s)
Aorta, Thoracic/metabolism , Aortic Diseases/metabolism , Collagen/biosynthesis , Extracellular Matrix Proteins/biosynthesis , Hypertension/complications , Muscle, Smooth, Vascular/metabolism , Animals , Aorta, Thoracic/pathology , Aortic Diseases/etiology , Aortic Diseases/pathology , Cells, Cultured , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Flow Cytometry , Hypertension/metabolism , Hypertension/pathology , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/pathology
18.
Circ Res ; 117(9): 804-16, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26338900

ABSTRACT

RATIONALE: Myocardial infarction causes irreversible tissue damage, leading to heart failure. We recently discovered that canonical Wnt signaling and the Wnt10b ligand are strongly induced in mouse hearts after infarction. Wnt10b regulates cell fate in various organs, but its role in the heart is unknown. OBJECTIVE: To investigate the effect of Wnt10b gain-of-function on cardiac repair mechanisms and to assess its potential to improve ventricular function after injury. METHODS AND RESULTS: Histological and molecular analyses showed that Wnt10b is expressed in cardiomyocytes and localized in the intercalated discs of mouse and human hearts. After coronary artery ligation or cryoinjury in mice, Wnt10b is strongly and transiently induced in peri-infarct cardiomyocytes during granulation tissue formation. To determine the effect of Wnt10b on neovascularization and fibrosis, we generated a mouse line to increase endogenous Wnt10b levels in cardiomyocytes. We found that gain of Wnt10b function orchestrated a recovery phenotype characterized by robust neovascularization of the injury zone, less myofibroblasts, reduced scar size, and improved ventricular function compared with wild-type mice. Wnt10b stimulated expression of vascular endothelial growth factor receptor 2 in endothelial cells and angiopoietin-1 in vascular smooth muscle cells through nuclear factor-κB activation. These effects coordinated endothelial growth and smooth muscle cell recruitment, promoting robust formation of large, coronary-like blood vessels. CONCLUSION: Wnt10b gain-of-function coordinates arterial formation and attenuates fibrosis in cardiac tissue after injury. Because generation of mature blood vessels is necessary for efficient perfusion, our findings could lead to novel strategies to optimize the inherent repair capacity of the heart and prevent the onset of heart failure.


Subject(s)
Arterioles/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Wnt Proteins/metabolism , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Animals , Blood Vessels/metabolism , Blotting, Western , Cell Line , Cell Proliferation , Cells, Cultured , Endothelial Cells/metabolism , Fibrosis , Gene Expression , Humans , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Muscle, Smooth, Vascular/cytology , Myocardium/pathology , Myocytes, Cardiac/cytology , Myocytes, Smooth Muscle/metabolism , Myofibroblasts/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Wnt Proteins/genetics
19.
Cell Rep ; 8(1): 229-41, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25001281

ABSTRACT

Cardiac tissue undergoes renewal with low rates. Although resident stem cell populations have been identified to support cardiomyocyte turnover, the source of the cardiac stem cells and their niche remain elusive. Using Cre/Lox-based cell lineage tracing strategies, we discovered that labeling of endothelial cells in the adult heart yields progeny that have cardiac stem cell characteristics and express Gata4 and Sca1. Endothelial-derived cardiac progenitor cells were localized in the arterial coronary walls with quiescent and proliferative cells in the media and adventitia layers, respectively. Within the myocardium, we identified labeled cardiomyocytes organized in clusters of single-cell origin. Pulse-chase experiments showed that generation of individual clusters was rapid but confined to specific regions of the heart, primarily in the right anterior and left posterior ventricular walls and the junctions between the two ventricles. Our data demonstrate that endothelial cells are an intrinsic component of the cardiac renewal process.


Subject(s)
Cell Lineage , Endothelial Cells/cytology , Endothelial Progenitor Cells/cytology , Homeostasis , Myocytes, Cardiac/cytology , Animals , Antigens, Ly/genetics , Antigens, Ly/metabolism , Cells, Cultured , Coronary Vessels/cytology , Endothelial Cells/metabolism , Endothelial Progenitor Cells/metabolism , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Heart Ventricles/cytology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Myoblasts/cytology , Myoblasts/metabolism , Myocytes, Cardiac/metabolism , Stem Cell Niche
20.
J Cereb Blood Flow Metab ; 34(8): 1297-305, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24780900

ABSTRACT

Surgical flow augmentation for treatment of cerebral hemodynamic impairment remains controversial. Here, we investigated the benefit of endothelial progenitor cell (EPC) treatment in a rat model of chronic cerebral hypoperfusion. At repeated time points after 3-vessel occlusion (3-VO), animals were treated with 1 × 10(6) DiI-labeled (a) ex vivo-expanded embryonic-EPC (e-EPC), (b) cyclic AMP-differentiated embryonic-endothelial progenitor-derived cells (e-EPDC as biologic control) or, (c) saline. The cerebrovascular reserve capacity (CVRC) was assessed immediately before and on days 7 and 21 after 3-VO. Structural effects were assessed by latex perfusion, immunohistochemistry, and intravital fluorescence video microscopy on day 21. Three-vessel occlusion resulted in a significant impairment of the CVRC with better functional recovery after treatment with e-EPC (16.4±8%) compared with e-EPDC (3.7±8%) or saline (6.4±9%) by day 21 (P<0.05), which was paralleled by a significant increase in the vessel diameters of the anterior Circle of Willis, a significantly higher number of leptomeningeal anastomoses and higher parenchymal capillary density in e-EPC-treated animals. Interestingly, despite in vivo interaction of e-EPC with the cerebral endothelium, e-EPC incorporation into the cerebral vasculature was not observed. Our results suggest that EPC may serve as a novel therapeutic agent in clinical trials for nonsurgical treatment of chronic cerebral hemodynamic impairment.


Subject(s)
Brain Ischemia/therapy , Cerebrovascular Circulation/physiology , Collateral Circulation/physiology , Endothelial Cells/transplantation , Endothelium, Vascular/physiopathology , Stem Cell Transplantation , Animals , Brain Ischemia/physiopathology , Cell Differentiation , Disease Models, Animal , Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Microscopy, Fluorescence , Neovascularization, Physiologic , Rats , Rats, Sprague-Dawley , Stem Cells/cytology , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...