Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Anal Bioanal Chem ; 403(3): 643-50, 2012 May.
Article in English | MEDLINE | ID: mdl-22012210

ABSTRACT

The fabrication of novel iron-doped barium strontium titanate thin films by means of radio frequency (RF) magnetron co-sputtering is shown. Investigations of the elemental composition and the dopant distribution in the thin films obtained by X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and time-of-flight secondary ion mass spectroscopy reveal a homogeneous dopant concentration throughout the thin film. The incorporation of the iron dopant and the temperature-dependent evolution of the crystal structure and morphology are analyzed by electron paramagnetic resonance spectroscopy, X-ray diffraction, Raman spectroscopy, atomic force microscopy, and scanning electron microscopy. In summary, these results emphasize the RF magnetron co-sputter process as a versatile way to fabricate doped thin films.

2.
IEE Proc Nanobiotechnol ; 151(4): 167-72, 2004 Aug.
Article in English | MEDLINE | ID: mdl-16475863

ABSTRACT

In microsystem technology, four important material classes are established either for the generation or the replication of microstructured surfaces: silicon, polymers, metals and ceramics. Composite materials consisting of a polymer matrix and ceramic fillers show improved thermomechanical properties in comparison to polymers and can be introduced as a new additional material class. The substitution of micro-sized ceramic fillers by nano-sized ceramics in composites has a strong influence on the composite's physical properties: the reduction of ceramic particle size down to the nanometre scale results in an improved sinter activity owing to the large surface area. The fabrication of dense ceramics is simplified and can be used for a rapid prototyping of microstructured ceramic parts. The addition of nano-sized ceramics with particle sizes of <40 nm to polymers allows the manufacturing of transparent polymer based composites with modified refractive indices for use in polymer waveguides. The influence of the ceramic particle size, the ceramic content and different dispersion methods on the composite's physical properties are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...