Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 193(4): 1717-27, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25015834

ABSTRACT

The activation of innate immune cells triggers numerous intracellular signaling pathways, which require tight control to mount an adequate immune response. The PI3K signaling pathway is intricately involved in innate immunity, and its activation dampens the expression and release of proinflammatory cytokines in myeloid cells. These signaling processes are strictly regulated by the PI3K antagonist, the lipid phosphatase, PTEN, a known tumor suppressor. Importantly, PTEN is responsible for the elevated production of cytokines such as IL-6 in response to TLR agonists, and deletion of PTEN results in diminished inflammatory responses. However, the mechanisms by which PI3K negatively regulates TLR signaling are only partially resolved. We observed that Arginase I expression and secretion were markedly induced by PTEN deletion, suggesting PTEN(-/-) macrophages were alternatively activated. This was mediated by increased expression and activation of the transcription factors C/EBPß and STAT3. Genetic and pharmacologic experimental approaches in vitro, as well as in vivo autoimmunity models, provide convincing evidence that PI3K/PTEN-regulated extracellular Arginase I acts as a paracrine regulator of inflammation and immunity.


Subject(s)
Arginase/metabolism , Macrophages/immunology , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/immunology , Adaptive Immunity , Animals , Arginase/genetics , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/immunology , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Genotype , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , HEK293 Cells , Humans , Immunity, Innate , Inflammation/genetics , Interleukin-10/biosynthesis , Interleukin-10/metabolism , Interleukin-6/biosynthesis , Interleukin-6/metabolism , Lipopolysaccharides/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Cells/enzymology , Myeloid Cells/immunology , Phosphoinositide-3 Kinase Inhibitors , RNA, Messenger/biosynthesis , STAT3 Transcription Factor/immunology , Signal Transduction/immunology , Toll-Like Receptors/agonists , Toll-Like Receptors/immunology , Tumor Necrosis Factor-alpha/biosynthesis
2.
J Mater Sci Mater Med ; 25(5): 1339-55, 2014 May.
Article in English | MEDLINE | ID: mdl-24577943

ABSTRACT

The polymeric niche encountered by cells during primary culturing can affect cell fate. However, most cell types are primarily propagated on polystyrene (PS). A cell type specific screening for optimal primary culture polymers particularly for regenerative approaches seems inevitable. The effect of physical and chemical properties of treated (corona, oxygen/nitrogen plasma) and untreated cyclic olefin polymer (COP), polymethymethacrylate (PMMA), PP, PLA, PS, PC on neuronal stem cell characteristics was analyzed. Our comprehensive approach revealed plasma treated COP and PMMA as optimal polymers for primary neuronal stem cell culturing and propagation. An increase in the number of NT2/D1 cells with pronounced adhesion, metabolic activities and augmented expression of neural precursor markers was associated to the plasma treatment of surfaces of COP and PMMA with nitrogen or oxygen, respectively. A shift towards large cell sizes at stable surface area/volume ratios that might promote the observed increase in metabolic activities and distinct modulations in F-actin arrangements seem to be primarily mediated by the plasma treatment of surfaces. These results indicate that the polymeric niche has a distinct impact on various cell characteristics. The selection of distinct polymers and the controlled design of an optimized polymer microenvironment might thereby be an effective tool to promote essential cell characteristics for subsequent approaches.


Subject(s)
Batch Cell Culture Techniques/methods , Biocompatible Materials/chemistry , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Polymers/chemistry , Stem Cell Niche/physiology , Tissue Engineering/methods , Animals , Cell Line , Cells, Cultured , Materials Testing , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...