Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 294(26): 10278-10289, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31110046

ABSTRACT

The retinal pigment epithelium (RPE) is a monolayer of pigmented cells between the choroid and the retina. RPE dysfunction underlies many retinal degenerative diseases, including age-related macular degeneration, the leading cause of age-related blindness. To perform its various functions in nutrient transport, phagocytosis of the outer segment, and cytokine secretion, the RPE relies on an active energy metabolism. We previously reported that human RPE cells prefer proline as a nutrient and transport proline-derived metabolites to the apical, or retinal, side. In this study, we investigated how RPE utilizes proline in vivo and why proline is a preferred substrate. By using [13C]proline labeling both ex vivo and in vivo, we found that the retina rarely uses proline directly, whereas the RPE utilizes it at a high rate, exporting proline-derived mitochondrial intermediates for use by the retina. We observed that in primary human RPE cell culture, proline is the only amino acid whose uptake increases with cellular maturity. In human RPE, proline was sufficient to stimulate de novo serine synthesis, increase reductive carboxylation, and protect against oxidative damage. Blocking proline catabolism in RPE impaired glucose metabolism and GSH production. Notably, in an acute model of RPE-induced retinal degeneration, dietary proline improved visual function. In conclusion, proline is an important nutrient that supports RPE metabolism and the metabolic demand of the retina.


Subject(s)
Energy Metabolism/drug effects , Proline/administration & dosage , Retina/metabolism , Retinal Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Animals , Carbon Radioisotopes/analysis , Cell Differentiation , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Oxidation-Reduction , Proline/pharmacology , Retina/drug effects , Retinal Degeneration/drug therapy , Retinal Degeneration/etiology , Retinal Pigment Epithelium/drug effects
2.
Proc Natl Acad Sci U S A ; 116(9): 3530-3535, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808746

ABSTRACT

Glucose metabolism in vertebrate retinas is dominated by aerobic glycolysis (the "Warburg Effect"), which allows only a small fraction of glucose-derived pyruvate to enter mitochondria. Here, we report evidence that the small fraction of pyruvate in photoreceptors that does get oxidized by their mitochondria is required for visual function, photoreceptor structure and viability, normal neuron-glial interaction, and homeostasis of retinal metabolism. The mitochondrial pyruvate carrier (MPC) links glycolysis and mitochondrial metabolism. Retina-specific deletion of MPC1 results in progressive retinal degeneration and decline of visual function in both rod and cone photoreceptors. Using targeted-metabolomics and 13C tracers, we found that MPC1 is required for cytosolic reducing power maintenance, glutamine/glutamate metabolism, and flexibility in fuel utilization.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Retina/metabolism , Vision, Ocular/genetics , Animals , Glucose/metabolism , Glycolysis/genetics , Humans , Mice , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters , Pyruvic Acid/metabolism , Retina/pathology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology
3.
Neurobiol Aging ; 71: 223-233, 2018 11.
Article in English | MEDLINE | ID: mdl-30172221

ABSTRACT

Aging is a major risk factor for age-related ocular diseases including age-related macular degeneration in the retina and retinal pigment epithelium (RPE), cataracts in the lens, glaucoma in the optic nerve, and dry eye syndrome in the cornea. We used targeted metabolomics to analyze metabolites from young (6 weeks) and old (73 weeks) eyes in C57 BL6/J mice. Old mice had diminished electroretinogram responses and decreased number of photoreceptors in their retinas. Among the 297 detected metabolites, 45-114 metabolites are significantly altered in aged eye tissues, mostly in the neuronal tissues (retina and optic nerve) and less in cornea, RPE/choroid, and lens. We noted that changes of metabolites in mitochondrial metabolism and glucose metabolism are common features in the aged retina, RPE/choroid, and optic nerve. The aging retina, cornea, and optic nerve also share similar changes in Nicotinamide adenine dinucleotide (NAD), 1-methylnicotinamides, 3-methylhistidine, and other methylated metabolites. Metabolites in taurine metabolism are strikingly influenced by aging in the cornea and lens. In conclusion, the aging eye has both common and tissue-specific metabolic signatures. These changes may be attributed to dysregulated mitochondrial metabolism, reprogrammed glucose metabolism and impaired methylation in the aging eye. Our findings provide biochemical insights into the mechanisms of age-related ocular changes.


Subject(s)
Aging/metabolism , Eye/metabolism , Animals , Choroid/metabolism , Cornea/metabolism , Electroretinography , Female , Male , Metabolomics , Mice, Inbred C57BL , Mitochondria/metabolism , Optic Nerve/metabolism , Photoreceptor Cells/metabolism , Retina/metabolism , Retinal Pigment Epithelium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...