Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Kidney Int Rep ; 9(2): 464-477, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344720

ABSTRACT

Introduction: C3 glomerulopathy (C3G) is an ultrarare renal disease characterized by deposition of complement component C3 in the glomerular basement membrane (GBM). Rare and novel genetic variation in complement genes and autoantibodies to complement proteins are commonly identified in the C3G population and thought to drive the underlying complement dysregulation that results in renal damage. However, disease heterogeneity and rarity make accurately defining characteristics of the C3G population difficult. Methods: Here, we present a retrospective analysis of the Molecular Otolaryngology and Renal Research Laboratories C3G cohort. This study integrated complement biomarker testing and in vitro tests of autoantibody function to achieve the following 3 primary goals: (i) define disease profiles of C3G based on disease drivers, complement biomarkers, and age; (ii) determine the relationship between in vitro autoantibody tests and in vivo complement dysregulation; and (iii) evaluate the association between autoantibody function and disease progression. Results: The largest disease profiles of C3G included patients with autoantibodies to complement proteins (48%) and patients for whom no genetic and/or acquired drivers of disease could be identified (43%). The correlation between the stabilization of convertases by complement autoantibodies as measured by in vitro modified hemolytic assays and systemic biomarkers that reflect in vivo complement dysregulation was remarkably strong. In patients positive for autoantibodies, the degree of stabilization capacity predicted worse renal function. Conclusion: This study implicates complement autoantibodies as robust drivers of systemic complement dysregulation in approximately 50% of C3G but also highlights the need for continued discovery-based research to identify novel drivers of disease.

2.
Am J Med Genet C Semin Med Genet ; 190(3): 344-357, 2022 09.
Article in English | MEDLINE | ID: mdl-35734939

ABSTRACT

C3 glomerulopathy (C3G) describes a pathologic pattern of injury diagnosed by renal biopsy. It is characterized by the dominant deposition of the third component of complement (C3) in the renal glomerulus as resolved by immunofluorescence microscopy. The underlying pathophysiology is driven by dysregulation of the alternative pathway of complement in the fluid-phase and in the glomerular microenvironment. Characterization of clinical features and a targeted evaluation for indices and drivers of complement dysregulation are necessary for optimal patient care. Autoantibodies to the C3 and C5 convertases of complement are the most commonly detected drivers of complement dysregulation, although genetic mutations in complement genes can also be found. Approximately half of patients progress to end-stage renal disease within 10 years of diagnosis, and, while transplantation is a viable option, there is high risk for disease recurrence and allograft failure. This poor outcome reflects the lack of disease-specific therapy for C3G, relegating patients to symptomatic treatment to minimize proteinuria and suppress renal inflammation. Fortunately, the future is bright as several anti-complement drugs are currently in clinical trials.


Subject(s)
Glomerulonephritis, Membranoproliferative , Kidney Diseases , Humans , Glomerulonephritis, Membranoproliferative/genetics , Glomerulonephritis, Membranoproliferative/therapy , Glomerulonephritis, Membranoproliferative/diagnosis , Kidney Diseases/genetics , Kidney Diseases/therapy , Kidney/pathology , Rare Diseases
3.
Kidney Int ; 102(4): 904-916, 2022 10.
Article in English | MEDLINE | ID: mdl-35752323

ABSTRACT

C3 glomerulopathy (C3G) is a rare complement-mediated disease. Specific treatments are not yet available and factors predictive of kidney survival such as age, kidney function and proteinuria are not specific to C3G. The prognostic value of biomarkers of complement activation, which are pathognomonic of the diseases, remains unknown. In a large cohort of 165 patients from the French National registry, we retrospectively assess the prognostic value of C3, soluble C5b-9 (sC5b-9), C3 nephritic factor, and rare disease-predicting variants in complement genes in predicting clinical outcome of patients. By multivariate analysis age (adult onset), reduced kidney function (defined by estimated glomerular filtration rate under 60ml/min) and presence of rare disease-predicting variants in complement genes predicted risk of progression to kidney failure. Moreover, by multivariate analysis, normal C3/high sC5b-9 levels or low C3/normal sC5b-9 levels remained independently associated with a worse kidney prognosis, with the relative risk 3.7- and 8-times higher, respectively. Subgroup analysis indicated that the complement biomarker profiles independently correlated to kidney prognosis in patients with adult but not pediatric onset. In this subgroup, we showed that profiles of biomarkers C3 and/or sC5b-9 correlated with intra glomerular inflammation and may explain kidney outcomes. In children, only the presence of rare disease-predicting variants correlated with kidney survival. Thus, in an adult population, we propose a three-point C3G prognostic score based on biomarker profiles at risk, estimated glomerular filtration rate at presentation and genetic findings, which may help stratify adult patients into subgroups that require close monitoring and more aggressive therapy.


Subject(s)
Glomerulonephritis, Membranoproliferative , Kidney Diseases , Adult , Biomarkers , Child , Complement C3/genetics , Complement C3 Nephritic Factor/genetics , Complement Membrane Attack Complex , Glomerulonephritis, Membranoproliferative/drug therapy , Glomerulonephritis, Membranoproliferative/genetics , Humans , Kidney Diseases/diagnosis , Kidney Diseases/genetics , Kidney Glomerulus , Rare Diseases , Retrospective Studies
4.
Front Immunol ; 10: 668, 2019.
Article in English | MEDLINE | ID: mdl-31024533

ABSTRACT

C3 Glomerulopathy (C3G) is a renal disease mediated primarily by dysregulation of the alternative pathway of complement. Complement is the cornerstone of innate immunity. It targets infectious microbes for destruction, clears immune complexes, and apoptotic cells from the circulation, and augments the humoral response. In C3G, this process becomes dysregulated, which leads to the deposition of complement proteins-including complement component C3-in the glomerular basement membrane of the kidney. Events that trigger complement are typically environmental insults like infections. Once triggered, in patients who develop C3G, complement activity is sustained by a variety of factors, including rare or novel genetic variants in complement genes and autoantibodies that alter normal complement protein function and/or regulation. Herein, we review two such autoantibodies, one to Factor B and the other to C4b2a, the C3 convertase of the classical, and lectin pathways. These two types of autoantibodies are identified in a small fraction of C3G patients and contribute marginally to the C3G phenotype.


Subject(s)
Autoantibodies/immunology , Complement C4b/immunology , Complement Factor B/immunology , Glomerulonephritis, Membranoproliferative/immunology , Humans
5.
J Am Soc Nephrol ; 27(4): 1245-53, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26283675

ABSTRACT

The thrombotic microangiopathies (TMAs) and C3 glomerulopathies (C3Gs) include a spectrum of rare diseases such as atypical hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, C3GN, and dense deposit disease, which share phenotypic similarities and underlying genetic commonalities. Variants in several genes contribute to the pathogenesis of these diseases, and identification of these variants may inform the diagnosis and treatment of affected patients. We have developed and validated a comprehensive genetic panel that screens all exons of all genes implicated in TMA and C3G. The closely integrated pipeline implemented includes targeted genomic enrichment, massively parallel sequencing, bioinformatic analysis, and a multidisciplinary conference to analyze identified variants in the context of each patient's specific phenotype. Herein, we present our 1-year experience with this panel, during which time we studied 193 patients. We identified 17 novel and 74 rare variants, which we classified as pathogenic (11), likely pathogenic (12), and of uncertain significance (68). Compared with controls, patients with C3G had a higher frequency of rare and novel variants in C3 convertase (C3 and CFB) and complement regulator (CFH, CFI, CFHR5, and CD46) genes (P<0.05). In contrast, patients with TMA had an increase in rare and novel variants only in complement regulator genes (P<0.01), a distinction consistent with differing sites of complement dysregulation in these two diseases. In summary, we were able to provide a positive genetic diagnosis in 43% and 41% of patients carrying the clinical diagnosis of C3G and TMA, respectively.


Subject(s)
Kidney Diseases/diagnosis , Kidney Diseases/genetics , Kidney Glomerulus , Thrombotic Microangiopathies/diagnosis , Thrombotic Microangiopathies/genetics , Adolescent , Child , Child, Preschool , Complement C3 , Female , Genetic Testing/methods , Humans , Kidney Diseases/immunology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...