Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3908, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400438

ABSTRACT

Recent studies indicate that mantle plumes, which transfer material and heat from the earth's interior to its surface, represent multifaceted upwellings. The Tristan-Gough hotspot track (South Atlantic), which formed above a mantle plume, documents spatial geochemical zonation in two distinct sub-tracks since ~70 Ma. The origin and the sudden appearance of two distinct geochemical flavors is enigmatic, but could provide insights into the structural evolution of mantle plumes. Sr-Nd-Pb-Hf isotope data from the Late Cretaceous Rio Grande Rise and adjacent Jean Charcot Seamount Chain (South American Plate), which represent the counterpart of the older Tristan-Gough volcanic track (African Plate), extends the bilateral-zonation to ~100 Ma. Our results support recent numerical models, demonstrating that mantle plumes can split into distinct upper mantle conduits, and provide evidence that these plumelets formed at the plume head-to-plume tail transition. We attribute the plume zonation to sampling the geochemically-graded margin of the African Large Low-Shear-Velocity Province.

2.
Nat Commun ; 8: 14322, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28181497

ABSTRACT

The Ontong Java and Manihiki oceanic plateaus are believed to have formed through high-degree melting of a mantle plume head. Boninite-like, low-Ti basement rocks at Manihiki, however, imply a more complex magma genesis compared with Ontong Java basement lavas that can be generated by ∼30% melting of a primitive mantle source. Here we show that the trace element and isotope compositions of low-Ti Manihiki rocks can best be explained by re-melting of an ultra-depleted source (possibly a common mantle component in the Ontong Java and Manihiki plume sources) re-enriched by ≤1% of an ocean-island-basalt-like melt component. Unlike boninites formed via hydrous flux melting of refractory mantle at subduction zones, these boninite-like intraplate rocks formed through adiabatic decompression melting of refractory plume material that has been metasomatized by ocean-island-basalt-like melts. Our results suggest that caution is required before assuming all Archaean boninites were formed in association with subduction processes.

3.
Nat Commun ; 6: 7799, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26213112

ABSTRACT

Increasingly, spatial geochemical zonation, present as geographically distinct, subparallel trends, is observed along hotspot tracks, such as Hawaii and the Galapagos. The origin of this zonation is currently unclear. Recently zonation was found along the last ∼70 Myr of the Tristan-Gough hotspot track. Here we present new Sr-Nd-Pb-Hf isotope data from the older parts of this hotspot track (Walvis Ridge and Rio Grande Rise) and re-evaluate published data from the Etendeka and Parana flood basalts erupted at the initiation of the hotspot track. We show that only the enriched Gough, but not the less-enriched Tristan, component is present in the earlier (70-132 Ma) history of the hotspot. Here we present a model that can explain the temporal evolution and origin of plume zonation for both the Tristan-Gough and Hawaiian hotspots, two end member types of zoned plumes, through processes taking place in the plume sources at the base of the lower mantle.

4.
Nat Commun ; 5: 4923, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25230110

ABSTRACT

Large igneous province subduction is a rare process on Earth. A modern example is the subduction of the oceanic Hikurangi Plateau beneath the southern Kermadec arc, offshore New Zealand. This segment of the arc has the largest total lava volume erupted and the highest volcano density of the entire Kermadec arc. Here we show that Kermadec arc lavas south of ~32°S have elevated Pb and Sr and low Nd isotope ratios, which argues, together with increasing seafloor depth, forearc retreat and crustal thinning, for initial Hikurangi Plateau-Kermadec arc collision ~250 km north of its present position. The combined data set indicates that a much larger portion of the Hikurangi Plateau (the missing Ontong Java Nui piece) than previously believed has already been subducted. Oblique plate convergence caused southward migration of the thickened and buoyant oceanic plateau crust, creating a buoyant 'Hikurangi' mélange beneath the Moho that interacts with ascending arc melts.

5.
Nature ; 451(7182): 1094-7, 2008 Feb 28.
Article in English | MEDLINE | ID: mdl-18223639

ABSTRACT

Resolving flow geometry in the mantle wedge is central to understanding the thermal and chemical structure of subduction zones, subducting plate dehydration, and melting that leads to arc volcanism, which can threaten large populations and alter climate through gas and particle emission. Here we show that isotope geochemistry and seismic velocity anisotropy provide strong evidence for trench-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. This finding contradicts classical models, which predict trench-normal flow owing to the overlying wedge mantle being dragged downwards by the subducting plate. The isotopic signature of central Costa Rican volcanic rocks is not consistent with its derivation from the mantle wedge or eroded fore-arc complexes but instead from seamounts of the Galapagos hotspot track on the subducting Cocos plate. This isotopic signature decreases continuously from central Costa Rica to northwestern Nicaragua. As the age of the isotopic signature beneath Costa Rica can be constrained and its transport distance is known, minimum northwestward flow rates can be estimated (63-190 mm yr(-1)) and are comparable to the magnitude of subducting Cocos plate motion (approximately 85 mm yr(-1)). Trench-parallel flow needs to be taken into account in models evaluating thermal and chemical structure and melt generation in subduction zones.

SELECTION OF CITATIONS
SEARCH DETAIL
...