Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(15): e2307945, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38100238

ABSTRACT

The emerging fields of wearables and the Internet of Things introduce the need for electronics and power sources with unconventional form factors: large area, customizable shape, and flexibility. Thermoelectric (TE) generators can power those systems by converting abundant waste heat into electricity, whereas the versatility of additive manufacturing suits heterogeneous form factors. Here, additive manufacturing of high-performing flexible TEs is proposed. Maskless and large-area patterning of Bi2Te3-based films is performed by laser powder bed fusion directly on plastic foil. Mechanical interlocking allows simultaneous patterning, sintering, and attachment of the films to the substrate without using organic binders that jeopardize the final performance. Material waste could be minimized by recycling the unexposed powder. The particular microstructure of the laser-printed material renders the-otherwise brittle-Bi2Te3 films highly flexible despite their high thickness. The films survive 500 extreme-bending cycles to a 0.76 mm radius. Power factors above 1500 µW m-1K-2 and a record-low sheet resistance for flexible TEs of 0.4 Ω sq-1 are achieved, leading to unprecedented potential for power generation. This versatile fabrication route enables innovative implementations, such as cuttable arrays adapting to specific applications in self-powered sensing, and energy harvesting from unusual scenarios like human skin and curved hot surfaces.

2.
Phys Chem Chem Phys ; 25(17): 12148-12156, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37070707

ABSTRACT

Calcium oxalate precipitation is a common pathological calcification in the human body, whereby crystallite morphology is influenced by the chelating properties of biological ions such as citrate. It has been suggested that citrate could steer oxalate formation towards its dihydrated form and away from the monohydrated form, which was identified as a major cause for disease. To assess the influence of the citrate ion on the resulting calcium oxalate, surface energies were calculated at the dispersion-corrected density functional level of theory for both monohydrated and dihydrated calcium oxalate. Different adsorption geometries were considered by varying the attacking angle of citrate as well as by considering the citrate ion on top of an adsorbed water layer or penetrating the water layer. The obtained results were compared to ab initio molecular dynamics simulations and experimental scanning electron microscope images. A strong preference for citrate adsorption on calcium oxalate dihydrate was observed, suggesting medical applications for the treatment of such pathological calcifications.

3.
Chempluschem ; 88(3): e202200441, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36802130

ABSTRACT

While synthesis-properties-performance correlations are being studied for organophosphonic acid grafted TiO2 , their stability and the impact of the exposure conditions on possible changes in the interfacial surface chemistry remain unexplored. Here, the impact of different ageing conditions on the evolution of the surface properties of propyl- and 3-aminopropylphosphonic acid grafted mesoporous TiO2 over a period of 2 years is reported, using solid-state 31 P and 13 C NMR, ToF-SIMS and EPR as main techniques. In humid conditions under ambient light exposure, PA grafted TiO2 surfaces initiate and facilitate photo-induced oxidative reactions, resulting in the formation of phosphate species and degradation of the grafted organic group with a loss of carbon content ranging from 40 to 60 wt %. By revealing its mechanism, solutions were provided to prevent degradation. This work provides valuable insights for the broad community in choosing optimal exposure/storage conditions that extend the lifetime and improve the materials' performance, positively impacting sustainability.

4.
ACS Omega ; 7(49): 45409-45421, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36530305

ABSTRACT

Amino-alkylphosphonic acid-grafted TiO2 materials are of increasing interest in a variety of applications such as metal sorption, heterogeneous catalysis, CO2 capture, and enzyme immobilization. To date, systematic insights into the synthesis-properties-performance correlation are missing for such materials, albeit giving important know-how towards their applicability and limitations. In this work, the impact of the chain length and modification conditions (concentration and temperature) of amino-alkylphosphonic acid-grafted TiO2 on the surface properties and adsorption performance of palladium is studied. Via grafting with aminomethyl-, 3-aminopropyl-, and 6-aminohexylphosphonic acid, combined with the spectroscopic techniques (DRIFT, 31P NMR, XPS) and zeta potential measurements, differences in surface properties between the C1, C3, and C6 chains are revealed. The modification degree decreases with increasing chain length under the same synthesis conditions, indicative of folded grafted groups that sterically shield an increasing area of binding sites with increasing chain length. Next, all techniques confirm the different surface interactions of a C1 chain compared to a C3 or C6 chain. This is in line with palladium adsorption experiments, where only for a C1 chain, the adsorption efficiency is affected by the precursor concentration used for modification. The absence of a straightforward correlation between the number of free NH2 groups and the adsorption capacity for the different chain lengths indicates that other chain-length-specific surface interactions are controlling the adsorption performance. The increasing pH stability in the order of C1 < C3 < C6 can possibly be associated to a higher fraction of inaccessible hydrophilic sites due to the presence of folded structures. Lastly, the comparison of adsorption performance and pH stability with 3-aminopropyl(triethoxysilane)-grafted TiO2 reveals the applicability of both grafting methods depending on the envisaged pH during sorption.

5.
RSC Adv ; 12(55): 36046-36062, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36545072

ABSTRACT

Modification of metal oxides with organophosphonic acids (PAs) provides the ability to control and tailor the surface properties. The metal oxide phosphonic acid bond (M-O-P) is known to be stable under harsh conditions, making PAs a promising candidate for the recovery of metals from complex acidic leachates. The thiol functional group is an excellent regenerable scavenging group for these applications. However, the research on organophosphonic acid grafting with thiol groups is very limited. In this study, four different metal sorbent materials were designed with different thiol surface coverages. An aqueous-based grafting of 3-mercaptopropylphosphonic acid (3MPPA) on mesoporous TiO2 was employed. Surface grafted thiol groups could be obtained in the range from 0.9 to 1.9 groups per nm2. The different obtained surface properties were studied and correlated to the Pd adsorption performance. High Pd/S adsorption efficiencies were achieved, indicating the presence of readily available sorption sites. A large difference in their selectivity towards Pd removal from a spend automotive catalyst leachate was observed due to the co-adsorption of Fe on the titania support. The highest surface coverage showed the highest selectivity (K d: 530 mL g-1) and adsorption capacity (Q max: 0.32 mmol g-1) towards Pd, while strongly reducing the co-adsorption of Fe on remaining TiO2 sites.

6.
Inorg Chem ; 61(43): 17137-17143, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36260857

ABSTRACT

Composites formed by a metal-organic framework (MOF) and an ionic liquid (IL) are potentially interesting materials for applications ranging from gas separation to electrochemical devices. Consequently, there is a need for robust and low-cost preparation procedures that are compatible with the desired applications. We herein report a solvent-free, one-step, and vapor-based ship-in-bottle synthesis of the IL@MOF composite 1-butyl-3-methylimidazolium bromide@ZIF-8 in powder and thin film forms. In this approach, volatile IL precursors evaporate and subsequently adsorb and react within the MOF cages to form the IL.

7.
Adv Sci (Weinh) ; 9(15): e2200237, 2022 05.
Article in English | MEDLINE | ID: mdl-35343108

ABSTRACT

In this work, immobilization of the often unwanted filaments in dielectric barrier discharges (DBD) is achieved and used for one-step deposition of patterned coatings. By texturing one of the dielectric surfaces, a discharge containing stationary plasma filaments is ignited in a mix of argon and propargyl methacrylate (PMA) in a reactor operating at atmospheric pressure. From PMA, hydrophobic and hydrophilic chemical and topographical contrasts at sub-millimeter scale are obtained on silicon and glass substrates. Chemical and physical characterizations of the samples are performed by micrometer-scale X-ray photoelectron spectroscopy and infrared imaging and by water contact angle and profilometry, respectively. From the latter and additional information from high-speed imaging of the plasma phase and electrical measurements, it is suggested that filaments, denser in energetic species, lead to higher deposition rate with higher fragmentation of the precursor, while surface discharges igniting outwards the filaments are leading to smoother and slower deposition. This work opens a new route for a one-step large-area chemical and morphological patterning of surfaces at sub-millimeter scales. Moreover, the possibility to separately deposit coatings from filaments and the surrounding plasma phase can be helpful to better understand the processes occurring during plasma polymerization in filamentary DBD.


Subject(s)
Plasma Gases , Argon/chemistry , Atmospheric Pressure , Hydrophobic and Hydrophilic Interactions , Plasma Gases/chemistry , Polymerization
8.
Angew Chem Int Ed Engl ; 60(49): 25668-25673, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34478224

ABSTRACT

Film deposition and high-resolution patterning of ionic liquids (ILs) remain a challenge, despite a broad range of applications that would benefit from this type of processing. Here, we demonstrate for the first time the chemical vapor deposition (CVD) of ILs. The IL-CVD method is based on the formation of a non-volatile IL through the reaction of two vaporized precursors. Ionogel micropatterns can be easily obtained via the combination of IL-CVD and standard photolithography, and the resulting microdrop arrays can be used as microreactors. The IL-CVD approach will facilitate leveraging the properties of ILs in a range of applications and microfabricated devices.

9.
ACS Nano ; 15(9): 14858-14872, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34428372

ABSTRACT

Colloidal Cu-Ag nanocrystals measuring less than 10 nm across are promising candidates for integration in hybrid CO2 reduction reaction (CO2RR) interfaces, especially in the context of tandem catalysis and selective multicarbon (C2-C3) product formation. In this work, we vary the synthetic-ligand/copper molar ratio from 0.1 to 1.0 and the silver/copper atomic ratio from 0 to 0.7 and study the variations in the nanocrystals' size distribution, morphology and reactivity at rates of ≥100 mA cm-2 in a gas-fed recycle electrolyzer operating under neutral to mildly basic conditions (0.1-1.0 M KHCO3). High-resolution electron microscopy and spectroscopy are used in order to characterize the morphology of sub-10 nm Cu-Ag nanodimers and core-shells and to elucidate trends in Ag coverage and surface composition. It is shown that Cu-Ag nanocrystals can be densely dispersed onto a carbon black support without the need for immediate ligand removal or binder addition, which considerably facilitates their application. Although CO2RR product distribution remains an intricate function of time, (kinetic) overpotential and processing conditions, we nevertheless conclude that the ratio of oxygenates to hydrocarbons (which depends primarily on the initial dispersion of the nanocrystals and their composition) rises 3-fold at moderate Ag atom % relative to Cu NCs-based electrodes. Finally, the merits of this particular Cu-Ag/C system and the recycling reactor employed are utilized to obtain maximum C2-C3 partial current densities of 92-140 mA cm-2 at -1.15 VRHE and liquid product concentrations in excess of 0.05 wt % in 1 M KHCO3 after short electrolysis periods.

10.
Nat Commun ; 12(1): 3996, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183682

ABSTRACT

Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.


Subject(s)
Bacterial Proteins/chemistry , Deltaproteobacteria/metabolism , Electric Conductivity , Electron Transport/physiology , Nickel/chemistry , Electricity
11.
Dalton Trans ; 50(20): 6784-6788, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33969844

ABSTRACT

Chemical vapor deposition of metal-organic frameworks (MOF-CVD) will facilitate the integration of porous and crystalline coatings in electronic devices. In the two-step MOF-CVD process, a precursor layer is first deposited and subsequently converted to a MOF through exposure to linker vapor. We herein report the impact of different metal oxide and metalcone layers as precursors for zeolitic imidazolate framework ZIF-8 films.

12.
Front Microbiol ; 12: 628599, 2021.
Article in English | MEDLINE | ID: mdl-33643256

ABSTRACT

Eleven series of water kefir fermentation processes differing in the presence of oxygen and the type and concentration of inoculum and substrate, were followed as a function of time to quantify the impact of these parameters on the kinetics of this process via a modeling approach. Increasing concentrations of the water kefir grain inoculum increased the water kefir fermentation rate, so that the metabolic activity during water kefir fermentation was mainly associated with the grains. Water kefir liquor could also be used as an alternative means of inoculation, but the resulting fermentation process progressed slower than the one inoculated with water kefir grains, and the production of water kefir grain mass was absent. Substitution of sucrose with glucose and/or fructose reduced the water kefir grain growth, whereby glucose was fermented faster than fructose. Lacticaseibacillus paracasei (formerly known as Lactobacillus paracasei), Lentilactobacillus hilgardii (formerly known as Lactobacillus hilgardii), Liquorilactobacillus nagelii (formerly known as Lactobacillus nagelii), Saccharomyces cerevisiae, and Dekkera bruxellensis were the main microorganisms present. Acetic acid bacteria were present in low abundances under anaerobic conditions and only proliferated under aerobic conditions. Visualization of the water kefir grains through scanning electron microscopy revealed that the majority of the microorganisms was attached onto their surface. Lactic acid bacteria and yeasts were predominantly associated with the grains, whereas acetic acid bacteria were predominantly associated with the liquor.

13.
Nat Mater ; 20(1): 93-99, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33106648

ABSTRACT

Metal-organic frameworks (MOFs) offer disruptive potential in micro- and optoelectronics because of the unique properties of these microporous materials. Nanoscale patterning is a fundamental step in the implementation of MOFs in miniaturized solid-state devices. Conventional MOF patterning methods suffer from low resolution and poorly defined pattern edges. Here, we demonstrate the resist-free, direct X-ray and electron-beam lithography of MOFs. This process avoids etching damage and contamination and leaves the porosity and crystallinity of the patterned MOFs intact. The resulting high-quality patterns have excellent sub-50-nm resolution, and approach the mesopore regime. The compatibility of X-ray and electron-beam lithography with existing micro- and nanofabrication processes will facilitate the integration of MOFs in miniaturized devices.

14.
Materials (Basel) ; 13(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33213026

ABSTRACT

Superabsorbent polymers (SAPs) are known to mitigate the development of autogenous shrinkage in cementitious mixtures with a low water-to-cement ratio. Moreover, the addition of SAPs promotes the self-healing ability of cracks. A drawback of using SAPs lies in the formation of macropores when the polymers release their absorbed water, leading to a reduction of the mechanical properties. Therefore, a supplementary material was introduced together with SAPs, being nanosilica, in order to obtain an identical compressive strength with respect to the reference material without additives. The exact cause of the similar compressive behaviour lies in the modification of the hydration process and subsequent microstructural development by both SAPs and nanosilica. Within the present study, the effect of SAPs and nanosilica on the hydration progress and the hardened properties is assessed. By means of isothermal calorimetry, the hydration kinetics were monitored. Subsequently, the quantity of hydration products formed was determined by thermogravimetric analysis and scanning electron microscopy, revealing an increased amount of hydrates for both SAP and nanosilica blends. An assessment of the pore size distribution was made using mercury intrusion porosimetry and demonstrated the increased porosity for SAP mixtures. A correlation between microstructure and the compressive strength displayed its influence on the mechanical behaviour.

15.
ACS Omega ; 5(1): 692-700, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31956819

ABSTRACT

Organofunctional silanes are applied as coupling agents between organic coatings and low carbon steel substrates to promote adhesion. Although the metal oxide-silane interface plays an important role in the performance of the entire overlying coating system, it remains challenging to obtain a clear understanding of the interfacial molecular bonding mechanism and its influence on adhesion. In this work, time-of-flight secondary ion mass spectrometry is used to study interfacial interactions between aminopropyl triethoxysilane (APS) and low carbon steel. APS is shown to bond to the steel substrate through silanol steel and amine-steel interactions, and coatings are cured at varying temperatures to evaluate the influence of curing on these different types of bonding interactions. Unambiguous evidence for hydrogen bond interactions between APS silanol groups and steel surface hydroxyl groups is provided for the first time in this work through deuteration of the steel substrate and allows to tackle long-lasting doubts about the most wide-spread bonding theory that has been postulated for silane adsorption on metals.

16.
ACS Appl Mater Interfaces ; 11(43): 40629-40641, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31589404

ABSTRACT

In this work, structural and active corrosion inhibition effects induced by lithium ion addition in organic-inorganic coatings based on poly(methyl methacrylate) (PMMA)-silica sol-gel coatings have been investigated. The addition of increasing amounts of lithium carbonate (0, 500, 1000, and 2000 ppm), yielded homogeneous hybrid coatings with increased connectivity of nanometric silica cross-link nodes, covalently linked to the PMMA matrix, and improved adhesion to the aluminum substrate (AA7075). Electrochemical impedance spectroscopy (EIS), performed in 3.5% NaCl aqueous solution, showed that the improved structural properties of coatings with higher lithium loadings result in an increased corrosion resistance, with an impedance modulus up to 50 GΩ cm2, and revealed that the lithium induced self-healing ability significantly improves their durability. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS) suggest that the regeneration process occurs by means of lithium ions leaching from the adjacent coating toward the corrosion spot, which is restored by a protective layer of precipitated Li rich aluminum hydroxide species. An analogue mechanism has been proposed for artificially scratched coatings presenting an increase of the impedance modulus after salt spray test compared to the lithium free coating. These results evidence the active role of lithium ions in improving the passive barrier of the PMMA-silica coating and in providing through the self-restoring ability a significantly extended service life of AA7075 alloy exposed to saline environment.

17.
Chem Commun (Camb) ; 55(68): 10056-10059, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31369024

ABSTRACT

Copper dicarboxylate metal-organic framework films are deposited via chemical vapour deposition. Uniform films of CuBDC and CuCDC with an out-of-plane orientation and accessible porosity are obtained from the reaction of Cu and CuO with vaporised dicarboxylic acid linkers.

18.
J Phys Chem B ; 122(2): 1000-1008, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29215283

ABSTRACT

We use ambient-pressure X-ray photoelectron spectroscopy (APXPS) to study chemical changes, including hydroxylation and water adsorption, at copper oxide surfaces from ultrahigh vacuum to ambient relative humidities of ∼5%. Polycrystalline CuO and Cu2O surfaces were prepared by selective oxidation of metallic copper foils. For both oxides, hydroxylation occurs readily, even at high-vacuum conditions. Hydroxylation on both oxides plateaus near ∼0.01% relative humidity (RH) at a coverage of ∼1 monolayer. In contrast to previous studies, neither oxide shows significant accumulation of molecular water; rather, both surfaces show a high affinity for adventitious carbon contaminants. Results of isobaric and isothermic experiments are compared, and the strengths and potential drawbacks of each method are discussed. We also provide critical evaluations of the effects of the hot filament of the ion pressure gauge on the reactivity of gas-phase species, the peak fitting procedure on the quantitative analysis of spectra, and rigorous accounting of carbon contamination on data analysis and interpretation. This work underscores the importance of considering experimental design and data analysis protocols during APXPS experiments with water vapor in order to minimize misinterpretations arising from these factors.

19.
Sci Rep ; 7(1): 13341, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042657

ABSTRACT

Understanding the stability of chemical interactions at the polymer/metal oxide interface under humid conditions is vital to understand the long-term durability of hybrid systems. Therefore, the interface of ultrathin PMMA films on native aluminum oxide, deposited by reactive adsorption, was studied. The characterization of the interface of the coated substrates was performed using ambient pressure X-ray photoelectron spectroscopy (APXPS), Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The formation of hydrogen bonds and carboxylate ionic bonds at the interface are observed. The formed ionic bond is stable up to 5 Torr water vapour pressure as shown by APXPS. However, when the coated samples are exposed to an excess of aqueous electrolyte, an increase in the amount of carboxylate bonds at the interface, as a result of hydrolysis of the methoxy group, is observed by ATR-FTIR Kretschmann. These observations, supported by ToF-SIMS spectra, lead to the proposal of an adsorption mechanism of PMMA on aluminum oxide, which shows the formation of methanol at the interface and the effect of water molecules on the different interfacial interactions.

20.
Sci Rep ; 7: 45123, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28327587

ABSTRACT

Probing initial interactions at the interface of hybrid systems under humid conditions has the potential to reveal the local chemical environment at solid/solid interfaces under real-world, technologically relevant conditions. Here, we show that ambient pressure X-ray photoelectron spectroscopy (APXPS) with a conventional X-ray source can be used to study the effects of water exposure on the interaction of a nanometer-thin polyacrylic acid (PAA) layer with a native aluminum oxide surface. The formation of a carboxylate ionic bond at the interface is characterized both with APXPS and in situ attenuated total reflectance Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann). When water is dosed in the APXPS chamber up to 5 Torr (~28% relative humidity), an increase in the amount of ionic bonds at the interface is observed. To confirm our APXPS interpretation, complementary ATR-FTIR Kretschmann experiments on a similar model system, which is exposed to an aqueous electrolyte, are conducted. These spectra demonstrate that water leads to an increased wet adhesion through increased ionic bond formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...