Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 50(4): 1283-94, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14622415

ABSTRACT

In Escherichia coli, RNA degradation is mediated by endonucleolytic processes, frequently mediated by RNase E, and also by a poly(A)-dependent mechanism. The dominant pathway of decay of the rpsO transcripts is initiated by an RNase E cleavage occurring at a preferential site named M2. We demonstrate that mutations which prevent this cleavage slow down degradation by RNase E. All these mutations reduce the single-stranded character of nucleotides surrounding the cleavage site. Moreover, we identify two other cleavage sites which probably account for the slow RNase E-mediated degradation of the mutated mRNAs. Failure to stabilize the rpsO transcript by appending a 5' hairpin indicates that RNase E is not recruited by the 5' end of mRNA. The fact that nucleotide substitutions which prevent cleavage at M2 facilitate the poly(A)-dependent degradation of the rpsO transcripts suggest an interplay between the two mechanisms of decay. In the discussion, we speculate that a structural feature located in the vicinity of M2 could be an internal degradosome entry site promoting both RNase E cleavages and poly(A)-dependent degradation of the rpsO mRNA. We also discuss the role of poly(A)-dependent decay in mRNA metabolism.


Subject(s)
Endoribonucleases/metabolism , Escherichia coli/genetics , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , Ribosomal Proteins/genetics , Escherichia coli/metabolism , Nucleic Acid Conformation , RNA Stability , RNA, Bacterial/genetics , Ribosomal Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...