Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Brain ; 147(6): 2085-2097, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38735647

ABSTRACT

Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism and hair anomalies. PNPLA6 encodes neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a systematic evidence-based review of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6-associated clinical diagnoses unambiguously reclassified 36 variants as pathogenic and 10 variants as likely pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship, and the generation of a preclinical animal model, pave the way for therapeutic trials, using NTE as a biomarker.


Subject(s)
Phenotype , Animals , Female , Humans , Male , Mice , Acyltransferases , Carboxylic Ester Hydrolases/genetics , Mutation, Missense , Phospholipases/genetics , Retinal Diseases/genetics
2.
bioRxiv ; 2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37333224

ABSTRACT

Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism, and hair anomalies. PNPLA6 encodes Neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a clinical meta-analysis of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6 -associated clinical diagnoses unambiguously reclassified 10 variants as likely pathogenic and 36 variants as pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship and the generation of a preclinical animal model pave the way for therapeutic trials, using NTE as a biomarker.

3.
J Chem Phys ; 140(6): 064315, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24527923

ABSTRACT

We have performed new direct-potential-fit (DPF) analyses of the rotationally resolved A (1)Π(u)(ν'=2,3;J' =1,2)→X(1)Σ(+)(g) (ν" ∈[0,11];J" ∈[0,3]) stimulated emission pumping spectra of Be2 [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)] using two quite different analytical potential energy functions that incorporate the correct theoretically known long-range behaviour in different ways. These functions are: the damped Morse/long-range potential [R. J. Le Roy, C. C. Haugen, J. Tao, and H. Li, Mol. Phys. 109, 435 (2011)], and the Chebyshev polynomial expansion potential [L. Busevica, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, V. V. Meshkov, E. A. Pazyuk, and A. V. Stolyarov, J. Chem. Phys. 134, 104307 (2011)]. In contrast with the expanded Morse oscillator potential determined in the original DPF analysis of Merritt et al. [Science 324, 1548 (2009)], both of these functions unambiguously support the existence of the v″ = 11 last vibrational levels which is bound by only ∼0.5 cm(-1), and they give equivalent, essentially exact predictions for this level when using the original data set which ended at v″ = 10. These empirical potentials predict an equilibrium distance of re = 2.445(5) Å and a well depth of D(e) = 934.9(0.4) cm(-1), values which agree (within the uncertainties) with the best ab initio estimates of 2.444(10) Å and 935(10) cm(-1), respectively [J. Koput, Phys. Chem. Chem. Phys. 13, 20311 (2011)].

4.
J Phys Chem A ; 117(50): 13373-87, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24093511

ABSTRACT

New high-resolution visible Fourier transform emission spectra of the A (2)Π â†’ X (2)Σ(+) and B' (2)Σ(+) → X (2)Σ(+) systems of (24)MgD and of the B' (2)Σ(+) → X (2)Σ(+) systems of (25,26)MgD and (25,26)MgH have been combined with earlier results for (24)MgH in a multi-isotopologue direct-potential-fit analysis to yield improved analytic potential energy and Born-Oppenheimer breakdown functions for the ground X (2)Σ(+) state of MgH. Vibrational levels of the ground state of (24)MgD were observed up to v" = 15, which is bound by only 30.6 ± 0.10 cm(-1). Including deuteride and minor magnesium isotopologue data allowed us also to determine the adiabatic Born-Oppenheimer breakdown effects in this molecule. The fitting procedure used the recently developed Morse/Long-Range (MLR) potential energy function, whose asymptotic behavior incorporates the correct inverse-power form. A spin-splitting radial correction function to take account of the (2)Σ spin-rotation interaction was also determined. Our refined value for the ground-state dissociation energy of the dominant isotopologue ((24)MgH) is D(e) = 11,104.25 ± 0.8 cm (-1), in which the uncertainty also accounts for the model dependence of the fitted D(e) values for a range of physically acceptable fits. We were also able to determine the marked difference in the well depths of (24)MgH and (24)MgD (with the deuteride potential curve being 7.58 ± 0.30 cm(-1) deeper than that of the hydride) as well as smaller well-depth differences for the minor (25,26)Mg isotopologues. This analytic potential function also predicts that the highest bound level of (24)MgD is v" = 16 and that it is bound by only 2.73 ± 0.10 cm(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...