Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 9(20): 11532-11544, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31695866

ABSTRACT

Most transplant experiments across species geographic range boundaries indicate that adaptation to stressful environments outside the range is often constrained. However, the mechanisms of these constraints remain poorly understood. We used extended generation crosses from diverged high and low elevation populations. In experiments across low elevation range boundaries, there was selection on the parental lines for abiotic stress-tolerance and resistance to herbivores. However, in support of a defense-tolerance trade-off, extended generation crosses showed nonindependent segregation of these traits in the laboratory across a drought-stress gradient and in the field across the low elevation range boundary. Genotypic variation in a marker from a region of the genome containing a candidate gene (MYC2) was associated with change in the genetic trade-off. Thus, using crosses and forward genetics, we found experimental genetic and molecular evidence for a pleiotropic trade-off that could constrain the evolution of range expansion.

2.
Plants (Basel) ; 5(1)2016 Mar 11.
Article in English | MEDLINE | ID: mdl-27135233

ABSTRACT

Low elevation "trailing edge" range margin populations typically face increases in both abiotic and biotic stressors that may contribute to range limit development. We hypothesize that selection may act on ABA and JA signaling pathways for more stable expression needed for range expansion, but that antagonistic crosstalk prevents their simultaneous co-option. To test this hypothesis, we compared high and low elevation populations of Boechera stricta that have diverged with respect to constitutive levels of glucosinolate defenses and root:shoot ratios; neither population has high levels of both traits. If constraints imposed by antagonistic signaling underlie this divergence, one would predict that high constitutive levels of traits would coincide with lower plasticity. To test this prediction, we compared the genetically diverged populations in a double challenge drought-herbivory growth chamber experiment. Although a glucosinolate defense response to the generalist insect herbivore Spodoptera exigua was attenuated under drought conditions, the plastic defense response did not differ significantly between populations. Similarly, although several potential drought tolerance traits were measured, only stomatal aperture behavior, as measured by carbon isotope ratios, was less plastic as predicted in the high elevation population. However, RNAseq results on a small subset of plants indicated differential expression of relevant genes between populations as predicted. We suggest that the ambiguity in our results stems from a weaker link between the pathways and the functional traits compared to transcripts.

3.
Ecol Evol ; 3(13): 4339-47, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24340176

ABSTRACT

Because transplant experiments show that performance usually decreases across species range boundaries, some range limits might develop from factors and processes that prevent adaptation to stressful environments. Here, we determined whether an ecological cost of plant defense involving stress associated with changes in the local plant community may contribute to range limit development in the upland mustard species Boechera stricta. In a common garden experiment of 499 B. stricta plants, performance decreased and a multivariate axis of community structure increased across the boundary, indicating increased stress associated with the community change. There was also significant genetic variation (evolutionary potential) among marker-inferred inbred lines of B. stricta for tolerance to the stress; however, lines with high basal levels of glucosinolate toxins had lower tolerance to the change in community structure. We suggest that defense allocation, which is also needed across the range, may impede adaptation to the stress associated with the community change and thus contribute to range limit development.

4.
PLoS One ; 8(9): e75293, 2013.
Article in English | MEDLINE | ID: mdl-24069397

ABSTRACT

Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers) in its Brassicaceae host plant Boecherastricta. Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P. monoica-induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments) and terpenoid biosynthesis (major floral volatile compounds) were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production) were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry.


Subject(s)
Basidiomycota/physiology , Brassicaceae/genetics , Brassicaceae/microbiology , Flowers/genetics , Flowers/microbiology , Gene Expression Regulation, Plant , Transcriptome , Biological Transport , Brassicaceae/growth & development , Carbohydrate Metabolism , Cell Proliferation , Flowers/growth & development , Gene Expression Profiling , Gene Regulatory Networks , Homeostasis , Indoleacetic Acids/metabolism , Membrane Lipids/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/microbiology , Reproducibility of Results , Volatile Organic Compounds/metabolism , Waxes/metabolism
5.
Mol Ecol ; 18(23): 4974-83, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19863716

ABSTRACT

Many species of plants in the wild are distributed spatially in patches, the boundaries of which may occur and change because of a complicated interplay between myriad environmental stressors and limitations of, or constraints on, plant coping mechanisms. By examining genetic variation and co-variation among marker-inferred inbred lines and sib-families of an upland wild mustard species within and just a few meters across a natural patch boundary, we show that the evolution of tolerance to the stressful environment outside the patch may be constrained by allocation to glucosinolate compounds (GS) that are defensive against generalist insect herbivores. Several potential stressors were associated with the patch boundary, but carbon isotope ratios indicated that sib-families with smaller stomatal apertures maintained performance better in response to late season dry conditions, suggesting that drought was an important stressor. The presence of GS may help explain the characteristic patchy distribution of mustards, a relatively diverse and important plant family. This result challenges one end of the continuum of the long-standing Plant Apparency hypothesis, which essentially states the opposite causation, that low molecular weight toxins like GS are evolutionary responses of patchy distributions and correlated life-history traits.


Subject(s)
Brassicaceae/metabolism , Environment , Evolution, Molecular , Genetic Variation , DNA, Plant/genetics , Genetics, Population , Glucosinolates/analysis , Inbreeding , Microsatellite Repeats , Models, Statistical , Population Dynamics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...