Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(44): 38706-38715, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29022714

ABSTRACT

Organic solar cells (OSCs) are a complex assembly of disparate materials, each with a precise function within the device. Typically, the electrodes are flat, and the device is fabricated through a layering approach of the interfacial layers and photoactive materials. This work explores the integration of high surface area transparent electrodes to investigate the possible role(s) a three-dimensional electrode could take within an OSC, with a BHJ composed of a donor-acceptor combination with a high degree of electron and hole mobility mismatch. Nanotree indium tin oxide (ITO) electrodes were prepared via glancing angle deposition, structures that were previously demonstrated to be single-crystalline. A thin layer of zinc oxide was deposited on the ITO nanotrees via atomic layer deposition, followed by a self-assembled monolayer of C60-based molecules that was bound to the zinc oxide surface through a carboxylic acid group. Infiltration of these functionalized ITO nanotrees with the photoactive layer, the bulk heterojunction comprising PC71BM and a high hole mobility low band gap polymer (PDPPTT-T-TT), led to families of devices that were analyzed for the effect of nanotree height. When the height was varied from 0 to 50, 75, 100, and 120 nm, statistically significant differences in device performance were noted with the maximum device efficiencies observed with a nanotree height of 75 nm. From analysis of these results, it was found that the intrinsic mobility mismatch between the donor and acceptor phases could be compensated for when the electron collection length was reduced relative to the hole collection length, resulting in more balanced charge extraction and reduced recombination, leading to improved efficiencies. However, as the ITO nanotrees increased in height and branching, the decrease in electron collection length was offset by an increase in hole collection length and potential deleterious electric field redistribution effects, resulting in decreased efficiency.

2.
ACS Appl Mater Interfaces ; 7(15): 8188-99, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25808481

ABSTRACT

Two isostructural low-band-gap small molecules that contain a one-atom substitution, S for Se, were designed and synthesized. The molecule 7,7'-[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene]bis[6-fluoro-4-(5'-hexyl-2,2'-bithiophen-5-yl)benzo[c][1,2,5]thiadiazole] (1) and its selenium analogue 7,7'-[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene]bis[6-fluoro-4-(5'-hexyl-2,2'-bithiophen-5-yl)benzo[c][1,2,5]selenodiazole] (2) are both based on the electron-rich central unit benzo[1,2-b:4,5-b']dithiophene. The aim of this work was to investigate the effect of one-atom substitution on the optoelectronic properties and photovoltaic performance of devices. Theoretical calculations revealed that this one-atom variation has a small but measurable effect on the energy of frontier molecular orbital (HOMO and LUMO), which, in turn, can affect the absorption profile of the molecules, both neat and when mixed in a bulk heterojunction (BHJ) with PC71BM. The Se-containing variant 2 led to higher efficiencies [highest power conversion efficiency (PCE) of 2.6%] in a standard organic photovoltaic architecture, when combined with PC71BM after a brief thermal annealing, than the S-containing molecule 1 (highest PCE of 1.0%). Studies of the resulting morphologies of BHJs based on 1 and 2 showed that one-atom substitution could engender important differences in the solubilities, which then influenced the crystal orientations of the small molecules within this thin layer. Brief thermal annealing resulted in rotation of the crystalline grains of both molecules to more energetically favorable configurations.

3.
ACS Appl Mater Interfaces ; 5(23): 12663-71, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24224863

ABSTRACT

Silver nanowire mesh electrodes represent a possible mass-manufacturable route toward transparent and flexible electrodes for plastic-based electronics such as organic photovoltaics (OPVs), organic light emitting diodes (OLEDs), and others. Here we describe a route that is based upon spray-coated silver nanowire meshes on polyethylene terephthalate (PET) sheets that are treated with a straightforward combination of heat and pressure to generate electrodes that have low sheet resistance, good optical transmission, that are topologically flat, and adhere well to the PET substrate. The silver nanowire meshes were prepared by spray-coating a solution of silver nanowires onto PET, in air at slightly elevated temperatures. The as-prepared silver nanowire electrodes are highly resistive due to the poor contact between the individual silver nanowires. Light pressure applied with a stainless steel rod, rolled over the as-sprayed silver nanowire meshes on PET with a speed of 10 cm s(-1) and a pressure of 50 psi, results in silver nanowire mesh arrays with sheet resistances of less than 20 Ω/□. Bending of these rolled nanowire meshes on PET with different radii of curvature, from 50 to 0.625 mm, showed no degradation of the conductivity of the electrodes, as shown by the constant sheet resistance before and after bending. Repeated bending (100 times) around a rod with a radius of curvature of 1 mm also showed no increase in the sheet resistance, demonstrating good adherence and no signs of delamination of the nanowire mesh array. The diffuse and direct transmittance of the silver nanowires (both rolled and as-sprayed) was measured for wavelengths from 350 to 1200 nm, and the diffuse transmission was similar to that of the PET substrate; the direct transmission decreases by about 7-8%. The silver nanowires were then incorporated into OPV devices with the following architecture: transparent electrode/PEDOT:PSS/P3HT:PC61BM/LiF/Al. While slightly lower in efficiency than the standard indium tin oxide substrate (ITO), the rolled silver nanowire electrodes had a very good device yield, showing that short circuits resulting from the silver nanowire electrodes can be successfully avoided by this rolling approach.

4.
ACS Appl Mater Interfaces ; 3(10): 3962-70, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21950539

ABSTRACT

Control over interfacial properties in organic photovoltaics (OPVs) is critical for many aspects of their performance. Functionalization of the transparent conducting electrode, in this case, indium tin oxide (ITO), through an electrostatic layer by layer (eLbL) approach with cationic N,N'-bis[2-(trimethylammonium)ethylene] perylene-3,4,9,10-tetracarboxyldiimide (PTCDI(+)) and anionic poly(3,4-ethylenedioxythiophene):poly(p-styrenesulfonate) (PEDOT:PSS(-)), led to high control over the surface properties. The films were studied through a variety of surface and spectroscopic techniques, including X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy, atomic force microscopy (AFM), and ellipsometry. The work function of modified ITO was measured by UV photoelectron spectroscopy (UPS) and showed oscillating values with respect to odd-even layer numbers; the strong odd-even effect is due to the differing electronic characteristics of the top layer, either PTCDI(+) or PEDOT:PSS(-). The modified ITO electrodes were then used as the cathode in a series of inverted organic photovoltaic architectures. The performance of inverted OPVs was, in parallel to the UPS results, found to be highly dependent on the layer number of coated films and showed an obvious oscillation based on layer number. Inverted OPVs were retested after 128 days of storage in air, and almost all devices maintained over 70% of original power conversion efficiency (PCE).

SELECTION OF CITATIONS
SEARCH DETAIL
...