Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Dent ; 31(4): 215-224, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30106539

ABSTRACT

PURPOSE: This study expanded the analysis of subgingival dental plaques from previous research to include the evaluation of cohort, site and treatment effects on chemically measured endotoxin and activation of Toll-like receptor (TLR) based gene expression in two additional reporter cell lines: a TLR2 specific cell line and a THP-1 (multi TLR reporter) cell line. METHODS: Participants from high and low bleeding cohorts were sampled at baseline for both supra and subgingival dental plaque at both healthy as well as clinically diseased sites and then provided with intervention hygiene products including a stabilized SnF2 dentifrice and a new soft bristle manual toothbrush. Following 2 and 4 weeks of assigned dentifrice use, participants returned for a re-evaluation of gingival inflammation and bleeding and repeat samplings of dental plaque. Subgingival sampled plaques were chemically analyzed for endotoxin concentration using a Thermo Scientific Pierce LAL chromogenic endotoxin quantitation kit. Samples were also used for inoculation of two reporter cell assays (an HEK293 TLR2 reporter cell line and a THP-1 monocyte cell line). Reporter cell activation was analyzed via luminescence changes of secreted embryonic alkaline phosphatase. RESULTS: The endotoxin content of subgingival plaque could be measured directly with dye assays and plaque isolates activated gene expression in both TLR reporter cell lines. Higher disease cohorts and sites with gingival inflammation generally showed more endotoxins and higher levels of plaque virulence as compared to low disease cohorts or plaque sampled from clinically healthy sites. SnF2 dentifrice treatment was associated with broad scale reductions in endotoxin content and virulence potentiation properties of dental plaque samples collected subgingivally from patients. CLINICAL SIGNIFICANCE: These results collectively support the use of dye or various reporter cell lines in the characterization of plaque virulence in diseased populations and as a potential route for analysis in clinical evaluations of treatment interventions. Subgingival plaque 'detoxification' including effects on microbial pathogenicity as well as metabolic activity may be considered important mechanisms contributing to clinical benefits of SnF2 dentifrice.


Subject(s)
Dental Plaque , Dentifrices , Genes, Reporter , Tin Fluorides , Dental Plaque/microbiology , Dental Plaque Index , Dentifrices/pharmacology , HEK293 Cells , Humans , Tin Fluorides/pharmacology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Transcriptional Activation , Virulence
2.
J Clin Dent ; 28(2): 16-26, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28657701

ABSTRACT

OBJECTIVES: Lipopolysaccharides (LPSs) and lipoteichoic acids (LTAs), or bacterial endotoxins, bind with Toll-like receptors (TLRs) that are expressed on host cells of the periodontium, thereby contributing to the periodontal pathogenicity of oral bacteria. Stannous fluoride (SnF2), an antibacterial fluoride that treats and controls gingivitis, has been shown to react with lipophilic domains/anionic charges in LPS and LTA. The effects of bacterial species and dental plaque on toll receptors can be studied using genetically engineered cell lines containing linked toll receptors on their surfaces. This randomized, examiner-blinded study examined the clinical effects of stabilized SnF2 dentifrice intervention on gingivitis and dental plaque virulence in populations exhibiting high and low levels of clinical gingivitis. METHODS: Recruited populations were evaluated for gingival inflammation (MGI) and gingival bleeding (GBI) at baseline and assigned into two cohorts of 20 each, those with high (GBI > 20 sites) and low (GBI < 3 sites) levels of observed bleeding/gingivitis. Participants were sampled at baseline for both supra- and subgingival dental plaque at both healthy (no bleeding, PD = 2 mm), as well as clinically diseased sites (bleeding, PD = 3-4 mm), and then provided with an intervention hygiene product including a stabilized SnF2 dentifrice and a new soft bristle manual toothbrush. Following two and four weeks of assigned dentifrice use, participants returned for a re-evaluation of gingival inflammation and bleeding and repeat samplings of dental plaque. Plaque samples were analyzed by anaerobic culturing of gram negative anaerobes (GNA), as well as by incubation of subgingival sampled plaques with TLR4 transfected HEK293 cells, where gene expression was assessed by measurement of a SEAP alkaline phosphatase reporter as a marker of toll receptor activation. RESULTS: Clinical assessments showed statistically significant reductions in MGI (24-26%) and GBI (42-53%) gingivitis in both diseased and healthy cohorts following four weeks of dentifrice intervention. For all clinical examinations, MGI and bleeding sites were statistically significantly different (lower) in the low bleeding versus the higher bleeding cohort. Supragingival and subgingival GNAs were significantly reduced (p < 0.05) in both high and low disease cohorts at bleeding and healthy sites following four weeks of stabilized SnF2 dentifrice use. TLR activation from subgingival sampled plaque was reduced following four weeks of stabilized SnF2 dentifrice use in both high and low disease cohorts and in both healthy, as well as diseased sites. CONCLUSIONS: Collectively, these results support the potential for stabilized SnF2 dentifrice to provide clinical gingivitis benefits via mechanisms beyond control of plaque mass, potentially directly decreasing the pathogenicity of plaque biofilms by blocking reactivity of LPS and LTA ligands with tissue receptors associated with inflammation. Importantly, benefits could be seen in both diseased sites, as well as sites not yet exhibiting symptoms of inflammation, supporting the activity of SnF2 not just in treating diseased sites, but in preventing disease development. These learnings may influence treatment planning for patients susceptible to gingivitis.


Subject(s)
Dental Plaque/drug therapy , Dentifrices/therapeutic use , Tin Fluorides/therapeutic use , Toll-Like Receptors/metabolism , Bacteria/pathogenicity , Dental Plaque Index , Genetic Engineering , Gingivitis , HEK293 Cells , Humans , Periodontal Index , Single-Blind Method , Toll-Like Receptors/drug effects , Virulence
3.
Am J Dent ; 29(6): 321-327, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29178719

ABSTRACT

PURPOSE: To apply quantitative Toll-like receptors (TLR) cell assays to compare lipopolysaccharides (LPSs) and lipoteichoic acids (LTAs) from different oral bacterial strains for potential pathogenicity in vitro. METHODS: The potency of LPS and LTA from different bacteria on activation of TLR reporter genes in HEK-tlr cell lines was examined. P. gingivalis LPS mix, P. gingivalis 1690 LPS, P. gingivalis 1435/50 LPS, E. coli LPS (E. coli K12), B. subtilis LTA, S. aureus LTA, E. hirae LTA and S. pyogenes LTA were examined in both TLR2 and TLR4 HEK cell line reporter assays. Solutions of LPS and LTA from selected bacteria were applied in a dose response fashion to the TLR reporter cells under standard culture conditions for mammalian cells. Reporter gene secreted-embryonic-alkaline-phosphatase (SEAP) was measured, and half maximal effective concentration (EC50) was determined for each sample. Concentration dependent TLR activation was compared to similar responses to LPS and LTA for commercial BODIPY-TR-Cadaverine and LAL biochemical (non cell based) assays. RESULTS: All LPS from P. gingivalis activated both TLR2 and TLR4 responses. E. coli LPS is a strong activator for TLR4 but not for TLR2 responses. In contrast, both B. subtilis and S. aureus LTA provoked responses only in TLR2, but not in the TLR4 assay. Interestingly, E. hirae LTA and S. pyogenes LTA did not stimulate strong TLR2 responses. Instead, both E. hirae LTA and S. pyogenes LTA mounted a reasonable response in TLR4 reporter gene assay. Both LPS and LTA showed deactivation of fluorescence in BODIPY-TR-Cadaverine while only LPS was active in LAL. As with biochemical assays, an EC50 could be determined for LPS and LTA from various bacterial strains. The EC50 is defined as a concentration of LPS or LTA that provokes a response halfway between the baseline and maximum responses. Lower EC50 means higher potency in promoting TLR responses, and in principle indicates greater toxicity to the host. CLINICAL SIGNIFICANCE: InvivoGen TLR2 and TLR4 assays distinguish specific types of microbial products, such as LPS and LTA from different bacteria. Application of EC50 determinations creates a means for quantitative and comparisons of LPS and LTA virulence in a cellular-based assay and combinations of TLR reporter cell assays along with biochemical evaluation of LPS#47;LTA in BODIPY-TR-Cadaverine and LPS in LAL assays provides a means to quantitate virulence of plaque samples with respect to both LPS and LTA. These learnings have long-term implications for patient care in that understanding the virulence of patients' plaque provides important information to assess risk of oral diseases.


Subject(s)
Endotoxins/toxicity , Genes, Reporter , Gram-Positive Bacteria/chemistry , Lipopolysaccharides/toxicity , Teichoic Acids/toxicity , Toll-Like Receptors/drug effects , Toll-Like Receptors/genetics , Cell Line , Dose-Response Relationship, Drug , In Vitro Techniques , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Virulence
4.
Am J Dent ; 29(6): 328-332, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29178720

ABSTRACT

PURPOSE: To study the reactivity of lipopolysaccharide (LPS) and lipoteichoic acid (LTA) with the cationically charged agents cetylpyridinium chloride, stannous fluoride, and the non-cationic agent triclosan. We also assessed the effect of these agents to inhibit LPS and LTA binding to cellular Toll-like Receptors (TLRs) in vitro. METHODS: The ability of these antimicrobials to bind with LPS and/or LTA was assessed in both the Limulus amebocyte lysate and BODIPY-TR-cadaverine dye assays. Mass spectroscopy was then used to confirm that stannous fluoride directly binds with LPS and to determine stoichiometry. Lastly, we looked for possible inhibitory effects of these antimicrobial agents on the ability of fluorescently conjugated LPS to bind to TLR4 expressed on HEK 293 cells. RESULTS: Cetylpyridinium chloride (CPC) and stannous salts including stannous fluoride interfered with LPS and LTA reactivity in both dye assays, while triclosan had no effect. Mass spectroscopy revealed direct binding of stannous fluoride with E. Coli LPS at 1:1 stoichiometric ratios. In the cellular assay, cetylpyridinium chloride and stannous fluoride, but not triclosan, inhibited LPS binding to TLR4. CLINICAL SIGNIFICANCE: These results support a potential mechanism of action for stannous fluoride and CPC formulated in oral products in which these ingredients bind bacterial toxins and potentially render them less toxic to the host. These results may influence home care recommendations for patients at risk for plaque-related diseases.


Subject(s)
Anti-Infective Agents, Local/chemistry , Anti-Infective Agents, Local/pharmacology , Cetylpyridinium/pharmacology , Lipopolysaccharides/pharmacology , Mouthwashes/chemistry , Mouthwashes/pharmacology , Teichoic Acids/pharmacology , Tin Fluorides/pharmacology , Toothpastes/chemistry , Toothpastes/pharmacology , Triclosan/pharmacology , HEK293 Cells , Humans , Periodontitis/drug therapy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Toll-Like Receptors/drug effects , Virulence
5.
Cells ; 3(2): 616-26, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24921186

ABSTRACT

Transient receptor potential (TRP) ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are implicated in modulation of cough and nociception. In vivo, TRPA1 and TRPV1 are often co-expressed in neurons and TRPA1V1 hetero-tetramer formation is noted in cells co-transfected with the respective expression plasmids. In order to understand the impact of TRP receptor interaction on activity, we created stable cell lines expressing the TRPA1, TRPV1 and co-expressing the TRPA1 and TRPV1 (TRPA1V1) receptors. Among the 600 compounds screened against these receptors, we observed a number of compounds that activated the TRPA1, TRPV1 and TRPA1V1 receptors; compounds that activated TRPA1 and TRPA1V1; compounds that activated TRPV1 and TRPA1V1; compounds in which TRPA1V1 response was modulated by either TRPA1 or TRPV1; and compounds that activated only TRPV1 or TRPA1 or TRPA1V1; and one compound that activated TRPA1 and TRPV1, but not TRPA1V1. These results suggest that co-expression of TRPA1 and TRPV1 receptors imparts unique activation profiles different from that of cells expressing only TRPA1 or TRPV1.

SELECTION OF CITATIONS
SEARCH DETAIL