Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(5)2023 02 21.
Article in English | MEDLINE | ID: mdl-36899812

ABSTRACT

Measure of drug-mediated immune reactions that are dependent on the patient's genotype determine individual medication protocols. Despite extensive clinical trials prior to the license of a specific drug, certain patient-specific immune reactions cannot be reliably predicted. The need for acknowledgement of the actual proteomic state for selected individuals under drug administration becomes obvious. The well-established association between certain HLA molecules and drugs or their metabolites has been analyzed in recent years, yet the polymorphic nature of HLA makes a broad prediction unfeasible. Dependent on the patient's genotype, carbamazepine (CBZ) hypersensitivities can cause diverse disease symptoms as maculopapular exanthema, drug reaction with eosinophilia and systemic symptoms or the more severe diseases Stevens-Johnson-Syndrome or toxic epidermal necrolysis. Not only the association between HLA-B*15:02 or HLA-A*31:01 but also between HLA-B*57:01 and CBZ administration could be demonstrated. This study aimed to illuminate the mechanism of HLA-B*57:01-mediated CBZ hypersensitivity by full proteome analysis. The main CBZ metabolite EPX introduced drastic proteomic alterations as the induction of inflammatory processes through the upstream kinase ERBB2 and the upregulation of NFκB and JAK/STAT pathway implying a pro-apoptotic, pro-necrotic shift in the cellular response. Anti-inflammatory pathways and associated effector proteins were downregulated. This disequilibrium of pro- and anti-inflammatory processes clearly explain fatal immune reactions following CBZ administration.


Subject(s)
Drug Hypersensitivity , Stevens-Johnson Syndrome , Humans , Janus Kinases , Anticonvulsants/therapeutic use , Up-Regulation , Proteomics , STAT Transcription Factors/genetics , Signal Transduction , Carbamazepine , HLA-B Antigens/genetics , Stevens-Johnson Syndrome/etiology , Stevens-Johnson Syndrome/genetics , NF-kappa B/genetics
2.
Biomedicines ; 10(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35327495

ABSTRACT

Type B adverse drug reactions (ADRs) represent a significant threat as their occurrence arises unpredictable and despite proper application of the drug. The severe immune reaction Abacavir Hypersensitivity Syndrome (AHS) that arises in HIV+ patients treated with the antiretroviral drug Abacavir (ABC) strongly correlates to the presence of the human leukocyte antigen (HLA) genotype HLA-B*57:01 and discriminates HLA-B*57:01+ HIV+ patients from ABC treatment. However, not all HLA-B*57:01+ HIV+ patients are affected by AHS, implying the involvement of further patient-specific factors in the development of AHS. The establishment of a reliable assay to classify HLA-B*57:01 carriers as ABC sensitive or ABC tolerant allowed to investigate the T cell receptor (TCR) Vß chain repertoire of effector cells and revealed Vß6 and Vß24 as potential public TCRs in ABC sensitive HLA-B*57:01 carriers. Furthermore, distinct effects of ABC on the cellular proteome of ABC sensitive and tolerant volunteers were observed and suggest enhanced activation and maturation of dentritic cells (DC) in ABC sensitive volunteers. Analysis of ABC-naïve cellular proteomes identified the T cell immune regulator 1 (TCIRG1) as a potential prognostic biomarker for ABC susceptibility and the involvement of significantly upregulated proteins, particularly in peptide processing, antigen presentation, interferon (IFN), and cytokine regulation.

3.
J Pers Med ; 12(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35055355

ABSTRACT

Type B adverse drug reactions (ADRs) are unpredictable based on the drug's pharmacology and represent a key challenge in pharmacovigilance. For human leukocyte antigen (HLA)-mediated type B ADRs, it is assumed that the protein/small-molecule interaction alters the biophysical and mechanistic properties of the antigen presenting cells. Sophisticated methods enabled the molecular appreciation of HLA-mediated ADRs; in several instances, the drug molecule occupies part of the HLA peptide binding groove and modifies the recruited peptide repertoire thereby causing a strong T-cell-mediated immune response that is resolved upon withdrawal of medication. The severe ADR in HLA-B*57:01+ patients treated with the antiretroviral drug abacavir (ABC) in anti-HIV therapy is an example of HLA-drug-T cell cooperation. However, the long-term damages of the HLA-B*57:01-expressing immune cells following ABC treatment remain unexplained. Utilizing full proteome sequencing following ABC treatment of HLA-B*57:01+ cells, we demonstrate stringent proteomic alteration of the HLA/drug presenting cells. The proteomic content indisputably reflects the cellular condition; this knowledge directs towards individual pharmacovigilance for the development of personalized and safe medication.

SELECTION OF CITATIONS
SEARCH DETAIL
...