Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 103(8): 087405, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19792763

ABSTRACT

We present a combined experimental and theoretical study of the emission spectrum of zero dimensional nanocavity polaritons in electrically tunable single dot nanocavities. Such devices allow us to vary the dot-cavity detuning in situ and probe the emission spectrum under well-controlled conditions of lattice temperature and incoherent excitation level. Our results show that the observation of a double peak in the emission spectrum is not an unequivocal signature of strong coupling. Moreover, by comparing our results with theory, we extract the effective vacuum Rabi splitting, the pure dephasing rate, and their dependence on the incoherent optical pumping power and lattice temperature. Our study highlights how coupling to the lattice and dynamical fluctuations in the solid-state environment influence the coherence properties of quantum dot microcavity polaritons and, sometimes, may mask the occurrence of strong coupling.

2.
Biosens Bioelectron ; 24(12): 3688-92, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19501502

ABSTRACT

We present the design, fabrication and optical investigation of photonic crystal (PhC) nanocavity drop filters for use as optical biosensors. The resonant cavity mode wavelength and Q-factor are studied as a function of the ambient refractive index and as a function of adsorbed proteins (bovine serum albumin) on the sensor surface. Experiments were performed by evanescent excitation of the cavity mode via a PhC waveguide. This in turn is coupled to a ridge waveguide that allows the introduction of a fluid flow cell on a chip. A response of partial delta lambda/delta c=(4.54+/-0.66)x10(5)nm/M is measured leading to a measured detection limit as good as Delta m=4.0+/-0.6 fg or Delta m/Delta A=(4.9+/-0.7)x10(2)pg/mm(2)in the sensitive area.


Subject(s)
Biosensing Techniques/instrumentation , Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/instrumentation , Optical Devices , Refractometry/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...