Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(6): e11447, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38832142

ABSTRACT

Wildlife telemetry data may be used to answer a diverse range of questions relevant to wildlife ecology and management. One challenge to modeling telemetry data is that animal movement often varies greatly in pattern over time, and current continuous-time modeling approaches to handle such nonstationarity require bespoke and often complex models that may pose barriers to practitioner implementation. We demonstrate a novel application of treed Gaussian process (TGP) modeling, a Bayesian machine learning approach that automatically captures the nonstationarity and abrupt transitions present in animal movement. The machine learning formulation of TGPs enables modeling to be nearly automated, while their Bayesian formulation allows for the derivation of movement descriptors with associated uncertainty measures. We demonstrate the use of an existing R package to implement TGPs using the familiar Markov chain Monte Carlo algorithm. We then use estimated movement trajectories to derive movement descriptors that can be compared across individuals and populations. We applied the TGP model to a case study of lesser prairie-chickens (Tympanuchus pallidicinctus) to demonstrate the benefits of TGP modeling and compared distance traveled and residence times across lesser prairie-chicken individuals and populations. For broad usability, we outline all steps necessary for practitioners to specify relevant movement descriptors (e.g., turn angles, speed, contact points) and apply TGP modeling and trajectory comparison to their own telemetry datasets. Combining the predictive power of machine learning and the statistical inference of Bayesian methods to model movement trajectories allows for the estimation of statistically comparable movement descriptors from telemetry studies. Our use of an accessible R package allows practitioners to model trajectories and estimate movement descriptors, facilitating the use of telemetry data to answer applied management questions.

2.
PLoS One ; 19(5): e0304452, 2024.
Article in English | MEDLINE | ID: mdl-38820510

ABSTRACT

Lesser prairie-chicken (Tympanuchus pallidicinctus) populations of in the Sand Sagebrush Prairie Ecoregion of southwest Kansas and southeast Colorado, USA, have declined sharply since the mid-1980s. Decreased quality and availability of habitat are believed to be the main drivers of declines. Our objective was to reconstruct broad-scale change in the ecoregion since 1985 as a potential factor in population declines. We assessed temporal change from 1985-2015 in landcover types and calculated landscape metrics using Land Change Monitoring, Assessment, and Projection imagery layers. We also documented presence of anthropogenic structures including oil wells and electrical transmission lines. Landcover type composition changed little since 1990 across the Sand Sagebrush Prairie Ecoregion. However, anthropogenic structures (i.e., oil/gas wells, cell towers, wind farms, and transmission lines) notably increased, potentially causing functional habitat loss at a broad scale. Increased anthropogenic structures may have decreased habitat availability as well as the quality of existing habitat for lesser prairie-chickens, possibly contributing to recent population declines throughout the Sand Sagebrush Prairie Ecoregion.


Subject(s)
Grassland , Animals , Ecosystem , Kansas , Conservation of Natural Resources , Colorado , Galliformes/physiology , Population Dynamics
3.
Ecol Evol ; 14(2): e10871, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38304269

ABSTRACT

Conservation translocations are frequently inhibited by extensive dispersal after release, which can expose animals to dispersal-related mortality or Allee effects due to a lack of nearby conspecifics. However, translocation-induced dispersals also provide opportunities to study how animals move across a novel landscape, and how their movements are influenced by landscape configuration and anthropogenic features. Translocation among populations is considered a potential conservation strategy for lesser prairie-chickens (Tympanuchus pallidicinctus). We determined the influence of release area on dispersal frequency by translocated lesser prairie-chickens and measured how lesser prairie-chickens move through grassland landscapes through avoidance of anthropogenic features during their dispersal movements. We translocated 411 lesser prairie-chickens from northwest Kansas to southeastern Colorado and southwestern Kansas in 2016-2019. We used satellite GPS transmitters to track 115 lesser prairie-chickens throughout their post-release dispersal movements. We found that almost all lesser prairie-chickens that survived from their spring release date until June undergo post-translocation dispersal, and there was little variation in dispersal frequency by release area (96% of all tracked birds, 100% in Baca County, Colorado, 94% in Morton County, Kansas, n = 55). Dispersal movements (male: 103 ± 73 km, female: 175 ± 108 km, n = 62) led to diffusion across landscapes, with 69% of birds settling >5 km from their release site. During dispersal movements, translocated lesser prairie-chickens usually travel by a single 3.75 ± 4.95 km dispersal flight per day, selecting for steps that end far from roads and in Conservation Reserve Program (CRP) grasslands. Due to this "stepping stone" method of transit, landscape connectivity is optimized when <5 km separates grassland patches on the landscape. Future persistence of lesser prairie-chicken populations can be aided through conservation of habitat and strategic placement of CRP to maximize habitat connectivity. Dispersal rates suggest that translocation is better suited to objectives for regional, rather than site-specific, population augmentation for this species.

4.
Ecol Appl ; 34(2): e2930, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37941497

ABSTRACT

Wetland ecosystems are vital for maintaining global biodiversity, as they provide important stopover sites for many species of migrating wetland-associated birds. However, because weather determines their hydrologic cycles, wetlands are highly vulnerable to effects of climate change. Although changes in temperature and precipitation resulting from climate change are expected to reduce inundation of wetlands, few efforts have been made to quantify how these changes will influence the availability of stopover sites for migratory wetland birds. Additionally, few studies have evaluated how climate change will influence interannual variability or the frequency of extremes in wetland availability. For spring and fall bird migration in seven ecoregions in the south-central Great Plains of North America, we developed predictive models associating abundance of inundated wetlands with a suite of weather and land cover variables. We then used these models to generate predictions of wetland inundation at the end of the century (2069-2099) under future climate change scenarios. Climate models predicted the average number of inundated wetlands will likely decline during both spring and fall migration periods, with declines being greatest in the eastern ecoregions of the southern Great Plains. However, the magnitude of predicted declines varied considerably across climate models and ecoregions, with uncertainty among climate models being greatest in the High Plains ecoregion. Most ecoregions also were predicted to experience more-frequent extremely dry years (i.e., years with extremely low wetland abundances), but the projected change in interannual variability of wetland inundation was relatively small and varied across ecoregions and seasons. Because the south-central Great Plains represents an important link along the migratory routes of many wetland-dependent avian species, future declines in wetland inundation and more frequent periods of only a few wetlands being inundated will result in an uncertain future for migratory birds as they experience reduced availability of wetland stopover habitat across their migration pathways.


Subject(s)
Ecosystem , Wetlands , Animals , Climate Change , Biodiversity , Birds
5.
Ecol Evol ; 13(9): e10509, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37693934

ABSTRACT

Incubation breaks are necessary for any nesting bird but can increase the mortality risk of the nest or attending parent. How intrinsic and extrinsic variables affect nest attentiveness-the proportion of time a female is on nest during incubation- and subsequent survival of the nest remains unclear for uniparental species. We related female nest attentiveness to nest survival and tested the effects of intrinsic and extrinsic variables on nest attentiveness by female Lesser Prairie-chickens (Tympanuchus pallidicinctus) using GPS locations of 87 females at 109 nest sites in 3 study areas in Kansas during 2013-2015. Daily nest survival increased by 39% when nest attentiveness increased from 21% to 98%. Female Lesser Prairie-chickens were 18% less attentive as body mass increased from 600 to 920 g. Daily precipitation and temperature, controlled for days into the incubation period, had interactive effects on nest attentiveness with nest attentiveness lowest on cool, wet days and increasing as temperature increased, regardless of precipitation (41% attentiveness at 16°C and 79 mm of precipitation to 90% attentiveness at 37°C and 41 mm of precipitation). Nest attentiveness increased by 11% as the quantity of grass at the nest site increased from 5% to 78% when visual obstruction was at 1 and 2 decimeters (dm) and increased 9% as the quantity of grass at the nest site increased from 5% to 83% when visual obstruction was at its maximum (3 dm). Our findings reveal the critical importance of nest attentiveness and incubation behavior, not only in relation to demography, but within the context of changing environmental conditions. As warmer temperatures and extreme precipitation events become more common and change the growth rates of vegetation, species like the Lesser Prairie-chicken that are ground-nesting, rely on vegetation cover, and exhibit uniparental care could experience negative demographic consequences.

6.
Genome Biol Evol ; 15(4)2023 04 06.
Article in English | MEDLINE | ID: mdl-36916502

ABSTRACT

The Lesser Prairie-Chicken (Tympanuchus pallidicinctus; LEPC) is an iconic North American prairie grouse, renowned for ornate and spectacular breeding season displays. Unfortunately, the species has disappeared across much of its historical range, with corresponding precipitous declines in contemporary population abundance, largely due to climatic and anthropogenic factors. These declines led to a 2022 US Fish and Wildlife decision to identify and list two distinct population segments (DPSs; i.e., northern and southern DPSs) as threatened or endangered under the 1973 Endangered Species Act. Herein, we describe an annotated reference genome that was generated from a LEPC sample collected from the southern DPS. We chose a representative from the southern DPS because of the potential for introgression in the northern DPS, where some populations hybridize with the Greater Prairie-Chicken (Tympanuchus cupido). This new LEPC reference assembly consists of 206 scaffolds, an N50 of 45 Mb, and 15,563 predicted protein-coding genes. We demonstrate the utility of this new genome assembly by estimating genome-wide heterozygosity in a representative LEPC and in related species. Heterozygosity in a LEPC sample was 0.0024, near the middle of the range (0.0003-0.0050) of related species. Overall, this new assembly provides a valuable resource that will enhance evolutionary and conservation genetic research in prairie grouse.


Subject(s)
Chickens , Grassland , Animals , Endangered Species , Biological Evolution , Heterozygote
7.
Ecol Evol ; 12(12): e9544, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36466139

ABSTRACT

Recent studies have documented benefits of small, prescribed fire and wildfire for grassland-dependent wildlife, such as lesser prairie-chickens (Tympanuchus pallidicintus), but wildlife demographic response to the scale and intensity of megafire (wildfire >40,000 ha) in modern, fragmented grasslands remains unknown. Limited available grassland habitat makes it imperative to understand if increasing frequency of megafires could further reduce already declining lesser prairie-chicken populations, or if historical evolutionary interactions with fire make lesser prairie-chickens resilient. To evaluate lesser prairie-chicken demographic response to megafires, we compared lek counts, nest density, and survival rates of adults, nests, and chicks before (2014-2016) and after (2018-2020) a 2017 megafire in the mixed-grass prairie of Kansas, USA (Starbuck fire ~254,000 ha). There was a 67% decline in attending males on leks post-fire and a 57% decline in occupied leks post-fire. Despite population declines as indicated by lek counts, adult female breeding season survival ( S ^ ) was similar pre- ( S ^  = 0.65 ± 0.08 [SE]) and post-fire (0.61 ± 0.08), as was chick survival (pre-fire: 0.23 ± 0.07; post-fire: 0.27 ± 0.11). Nest survival appeared lower post-fire (pre-fire: 0.38 ± 0.06; post-fire: 0.20 ± 0.06), but did not differ at the 95% confidence interval. Nest density of marked females declined 73% in areas burned by megafire. Although lesser prairie-chickens persisted in the study area and we documented minimal effects on most demographic rates, reduced lesser prairie-chicken abundance and reproductive output suggests full recovery may take >3 years. Increased propensity for megafire resulting from suppression of smaller fires, compounded by climate change and woody encroachment, may impose a short-term (3-5 year) threat to already declining lesser prairie-chicken populations.

8.
PLoS One ; 17(5): e0266785, 2022.
Article in English | MEDLINE | ID: mdl-35584125

ABSTRACT

Globally, migration phenologies of numerous avian species have shifted over the past half-century. Despite North American waterfowl being well researched, published data on shifts in waterfowl migration phenologies remain scarce. Understanding shifts in waterfowl migration phenologies along with potential drivers is critical for guiding future conservation efforts. Therefore, we utilized historical (1955-2008) nonbreeding waterfowl survey data collected at 21 National Wildlife Refuges in the mid- to lower portion of the Central Flyway to summarize changes in spring and autumn migration phenology. We examined changes in the timing of peak abundance from survey data at monthly intervals for each refuge and species (or species group; n = 22) by year and site-specific temperature for spring (Jan-Mar) and autumn (Oct-Dec) migration periods. For spring (n = 187) and autumn (n = 194) data sets, 13% and 9% exhibited statistically significant changes in the timing of peak migration across years, respectively, while the corresponding numbers for increasing temperatures were 4% and 9%. During spring migration, ≥80% of significant changes in the timing of spring peak indicated advancements, while 67% of significant changes in autumn peak timing indicated delays both across years and with increasing temperatures. Four refuges showed a consistent pattern across species of advancing spring migration peaks over time. Advancements in spring peak across years became proportionally less common among species with increasing latitude, while delays in autumn peak with increasing temperature became proportionally more common. Our study represents the first comprehensive summary of changes in spring and autumn migration phenology for Central Flyway waterfowl and demonstrates significant phenological changes during the latter part of the twentieth century.


Subject(s)
Animal Migration , Climate Change , Animals , Birds , North America , Seasons
9.
Evol Appl ; 15(1): 111-131, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35126651

ABSTRACT

Hybridization is a natural process at species-range boundaries that may variably promote the speciation process or break down species barriers but minimally will influence management outcomes of distinct populations. White-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus) have broad and overlapping distributions in North America and a recognized capacity for interspecific hybridization. In response to contemporary environmental change to any of one or multiple still-unknown factors, mule deer range is contracting westward accompanied by a westward expansion of white-tailed deer, leading to increasing interactions, opportunities for gene flow, and associated conservation implications. To quantify genetic diversity, phylogenomic structure, and dynamics of hybridization in sympatric populations of white-tailed and mule deer, we used mitochondrial cytochrome b data coupled with SNP loci discovered with double-digest restriction site-associated DNA sequencing. We recovered 25,018 SNPs across 92 deer samples from both species, collected from two regions of western Kansas. Eight individuals with unambiguous external morphology representing both species were of hybrid origin (8.7%), and represented the product of multi-generational backcrossing. Mitochondrial data showed both ancient and recent directional discordance with morphological species assignments, reflecting a legacy of mule deer males mating with white-tailed deer females. Mule deer had lower genetic diversity than white-tailed deer, and both mitochondrial and nuclear data suggest contemporary mule deer effective population decline. Landscape genetic analyses show relative isolation between the two study regions for white-tailed deer, but greater connectivity among mule deer, with predominant movement from north to south. Collectively, our results suggest a long history of gene flow between these species in the Great Plains and hint at evolutionary processes that purge incompatible functional genomic elements as a result of hybridization. Surviving hybrids evidently may be reproductive, but with unknown consequences for the future integrity of these species, population trajectories, or relative susceptibility to emerging pathogens.

10.
J Environ Manage ; 301: 113776, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34619587

ABSTRACT

Agricultural landscapes are the leading edge in the advancement of sustainability and climate change adaptation. The purpose of this study is to endogenize culture as shaped by natural-cultural feedback into individuals' decision-making processes on sustainability policy support. We present an agent-based model in which an adaptive cultural decision-rule quantifies the probability of an agent deciding to support a wildlife area policy for the Smoky Hill River Watershed (SHRW) in Kansas, USA. By using an ABM to examine the watershed as a coupled natural and human system, we learned that agents would adopt a new behavior, voting for the policy, if the cultural conditions were right, with high levels of beliefs and norms for freshwater and its biota. Our results indicate that individuals in the SHRW are not engaged in caring for fish, plants, and bird richness in their rivers and playas with few individuals supporting the policy in the naïve cultural setting (8.9 % of simulated population). However, enough agents would support the policy under a lower cultural threshold (40.7 % of simulated population). Our results show that sustainability policies need to account for the local culture to gain support, and if a policy is culturally meaningful, it does not need to be cheap. For an agricultural landscape, such as those commonly found in the Central Great Plains, this study presents new levers for policymakers on the conditions needed to help assemble popular support for sustainability policies.


Subject(s)
Agriculture , Climate Change , Conservation of Natural Resources , Animals , Fresh Water , Humans , Policy , Rivers
11.
Transl Anim Sci ; 5(2): txab079, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34189418

ABSTRACT

The predominant grazing-management practice of the Kansas Flint Hills involves annual prescribed burning in March or April with postfire grazing by yearling beef cattle at a high stocking density from April to August. There has been a dramatic increase in sericea lespedeza (Lespedeza cuneata [Dumont] G. Don) coincident with this temporally focused use of prescribed fire in the Flint Hills region. The species is an aggressive invader and a statewide noxious weed in Kansas. Control has generally been attempted using repeated herbicide applications. This approach has not limited proliferation of sericea lespedeza and resulted in collateral damage to nontarget flora and fauna. Alternative timing of prescribed fire has not been evaluated for its control. Our objectives for this 4-yr experiment were to (1) document the effects of prescribed burning during early April, early August, or early September on vigor of sericea lespedeza, standing forage biomass, and basal cover of native graminoids, forbs, and shrubs and (2) measure responses to fire regimes by grassland bird and butterfly communities. Whole-plant dry mass, basal cover, and seed production of sericea lespedeza were markedly less (P < 0.01) in areas treated with prescribed fire in August or September compared with April. Forage biomass did not differ (P ≥ 0.43) among treatments when measured during July; moreover, frequencies of bare soil, litter, and total basal plant cover were not different (P ≥ 0.29) among treatments. Combined basal covers of C4 grasses, C3 grasses, annual grasses, forbs, and shrubs also did not differ (P ≥ 0.11) between treatments. Densities of grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), and eastern meadowlark (Sturnella magna) were not negatively affected (P > 0.10) by midsummer or late-summer fires relative to early-spring fires. There were no differences (P > 0.10) in densities of grassland-specialist butterfly species across fire regimes. Under the conditions of our experiment, prescribed burning during summer produced no detrimental effects on forage production, desirable nontarget plant species, grassland birds, or butterfly communities but had strong suppressive effects on sericea lespedeza. Additional research is warranted to investigate how to best incorporate late-summer prescribed fire into common grazing-management practices in the Kansas Flint Hills.

12.
Ecol Evol ; 10(24): 14330-14345, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33391719

ABSTRACT

Loss and degradation of grasslands in the Great Plains region have resulted in major declines in abundance of grassland bird species. To ensure future viability of grassland bird populations, it is crucial to evaluate specific effects of environmental factors among species to determine drivers of population decline and develop effective conservation strategies. We used threshold models to quantify the effects of land cover and weather changes in "lesser prairie-chicken" and "greater prairie-chicken" (Tympanuchus pallidicinctus and T. cupido, respectively), northern bobwhites (Colinus virginianus), and ring-necked pheasants (Phasianus colchicus). We demonstrated a novel approach for estimating landscape conditions needed to optimize abundance across multiple species at a variety of spatial scales. Abundance of all four species was highest following wet summers and dry winters. Prairie chicken and ring-necked pheasant abundance was highest following cool winters, while northern bobwhite abundance was highest following warm winters. Greater prairie chicken and northern bobwhite abundance was also highest following cooler summers. Optimal abundance of each species occurred in landscapes that represented a grassland and cropland mosaic, though prairie chicken abundance was optimized in landscapes with more grassland and less edge habitat than northern bobwhites and ring-necked pheasants. Because these effects differed among species, managing for an optimal landscape for multiple species may not be the optimal scenario for any one species.

13.
Sci Total Environ ; 695: 133769, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31422326

ABSTRACT

Sustainability has been at the forefront of the environmental research agenda of the integrated anthroposphere, hydrosphere, and biosphere since the last century and will continue to be critically important for future environmental science. However, linking humans and the environment through effective policy remains a major challenge for sustainability research and practice. Here we address this gap using an agent-based model (ABM) for a coupled natural and human systems in the Smoky Hill River Watershed (SHRW), Kansas, USA. For this freshwater-dependent agricultural watershed with a highly variable flow regime influenced by human-induced land-use and climate change, we tested the support for an environmental policy designed to conserve and protect fish biodiversity in the SHRW. We develop a proof of concept interdisciplinary ABM that integrates field data on hydrology, ecology (fish richness), social-psychology (value-belief-norm) and economics, to simulate human agents' decisions to support environmental policy. The mechanism to link human behaviors to environmental changes is the social-psychological sequence identified by the value-belief-norm framework and is informed by hydrological and fish ecology models. Our results indicate that (1) cultural factors influence the decision to support the policy; (2) a mechanism modifying social-psychological factors can influence the decision-making process; (3) there is resistance to environmental policy in the SHRW, even under potentially extreme climate conditions; and (4) the best opportunities for policy acceptance were found immediately after extreme environmental events. The modeling approach presented herein explicitly links biophysical and social science has broad generality for sustainability problems.

14.
Ecotoxicology ; 28(7): 809-824, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31325005

ABSTRACT

The magnitude and distribution of lead contamination remain unknown in wetland systems. Anthropogenic deposition of lead may be contributing to negative population-level effects in waterfowl and other organisms that depend on dynamic wetland habitats, particularly if they are unable to detect and differentiate levels of environmental contamination by lead. Detection of lead and behavioral response to elevated lead levels by waterfowl is poorly understood, but necessary to characterize the risk of lead-contaminated habitats. We measured the relationship between lead contamination of wetland soils and habitat use by mottled ducks (Anas fulvigula) on the Upper Texas Coast, USA. Mottled ducks have historically experienced disproportionate negative effects from lead exposure, and exhibit a unique nonmigratory life history that increases risk of exposure when inhabiting contaminated areas. We used spatial interpolation to estimate lead in wetland soils of the Texas Chenier Plain National Wildlife Refuge Complex. Soil lead levels varied across the refuge complex (0.01-1085.51 ppm), but greater lead concentrations frequently corresponded to areas with high densities of transmittered mottled ducks. We used soil lead concentration data and MaxENT species distribution models to quantify relationships among various habitat factors and locations of mottled ducks. Use of habitats with greater lead concentration increased during years of a major disturbance. Because mottled ducks use habitats with high concentrations of lead during periods of stress, have greater risk of exposure following major disturbance to the coastal marsh system, and no innate mechanism for avoiding the threat of lead exposure, we suggest the potential presence of an ecological trap of quality habitat that warrants further quantification at a population scale for mottled ducks.


Subject(s)
Animal Distribution , Ducks/physiology , Lead/analysis , Soil Pollutants/analysis , Wetlands , Animals , Ecosystem , Female , Soil/chemistry , Texas
15.
PLoS One ; 14(5): e0217172, 2019.
Article in English | MEDLINE | ID: mdl-31100093

ABSTRACT

Researchers and managers are often interested in monitoring the underlying state of a population (e.g., abundance), yet error in the observation process might mask underlying changes due to imperfect detection and availability for sampling. Additional heterogeneity can be introduced into a monitoring program when male-based surveys are used as an index for the total population. Often, male-based surveys are used for avian species, as males are conspicuous and more easily monitored than females. To determine if male-based lek surveys capture changes or trends in population abundance based on female survival and reproduction, we developed a virtual ecologist approach using the lesser prairie-chicken (Tympanuchus pallidicinctus) as an example. Our approach used an individual-based model to simulate lek counts based on female vital rate data, included models where detection and lek attendance probabilities were <1, and was analyzed using both unadjusted counts and an N-mixture model to compare estimates of population abundance and growth rates. Using lek counts to estimate population growth rates without accounting for detection probability or density-based lek attendance consistently biased population growth rates and abundance estimates. Our results therefore suggest that lek-based surveys used without accounting for lek attendance and detection probability may miss important trends in population changes. Rather than population-level inference, lek-based surveys not accounting for lek attendance and detection probability may instead be better for inferring broad-scale range shifts of lesser prairie-chicken populations in a presence/absence framework.


Subject(s)
Chickens/physiology , Ecosystem , Models, Statistical , Population Density , Population Dynamics , Animals , Conservation of Natural Resources , Female , Male
16.
Ecol Evol ; 8(18): 9550-9562, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30377522

ABSTRACT

We used the lesser prairie-chicken (Tympanuchus pallidicinctus), an iconic grouse species that exhibits a boom-bust life history strategy, on the Southern High Plains, USA, as a bioindicator of main and interactive effects of severe drought and grazing. This region experienced the worst drought on record in 2011. We surveyed lesser prairie-chicken leks (i.e., communal breeding grounds) across 12 years that represented 7 years before the 2011 drought (predrought) and 4 years during and following the 2011 drought (postdrought). Grazing was annually managed with the objective of achieving ≤50% utilization of aboveground vegetation biomass. We used lek (n = 49) count data and covariates of weather and managed grazing to: (a) estimate long-term lesser prairie-chicken abundance and compare abundance predrought and postdrought; (b) examine the influence of annual and seasonal drought (modified Palmer drought index), temperature, and precipitation on long-term lesser prairie-chicken survival and recruitment; and (c) assess and compare the influence of grazing on lesser prairie-chicken population predrought and postdrought. Lesser prairie-chicken abundance was nearly seven times greater predrought than postdrought, and population declines were attributed to decreased survival and recruitment. The number of days with temperature >90th percentile had the greatest effect, particularly on recruitment. The population exhibited a substantial bust during 2011 and 2012 without a boom to recover in four postdrought years. Adaptive grazing positively influenced the population predrought, but had no effects postdrought. Results suggest that the severe drought in 2011 may have been beyond the range of environmental conditions to which lesser prairie-chickens, and likely other species, have adapted. Land management practices, such as grazing, should remain adaptive to ensure potential negative influences to all species are avoided. Increasing habitat quantity and quality by reducing habitat loss and fragmentation likely will increase resiliency of the ecosystem and individual species.

17.
J Environ Manage ; 181: 552-562, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27423768

ABSTRACT

Playa wetlands, the dominant hydrological feature of the semi-arid U.S. High Plains providing critical ecosystem services, are being lost and degraded due to anthropogenic alterations of the short-grass prairie landscape. The primary process contributing to the loss of playas is filling of the wetland through accumulation of soil eroded and transported by precipitation from surrounding cultivated watersheds. We evaluated effectiveness of vegetative buffers surrounding playas in removing metals, nutrients, and dissolved/suspended sediments from precipitation runoff. Storm water runoff was collected at 10-m intervals in three buffer types (native grass, fallow cropland, and Conservation Reserve Program). Buffer type differed in plant composition, but not in maximum percent removal of contaminants. Within the initial 60 m from a cultivated field, vegetation buffers of all types removed >50% of all measured contaminants, including 83% of total suspended solids (TSS) and 58% of total dissolved solids (TDS). Buffers removed an average of 70% of P and 78% of N to reduce nutrients entering the playa. Mean maximum percent removal for metals ranged from 56% of Na to 87% of Cr. Maximum removal was typically at 50 m of buffer width. Measures of TSS were correlated with all measures of metals and nutrients except for N, which was correlated with TDS. Any buffer type with >80% vegetation cover and 30-60 m in width would maximize contaminant removal from precipitation runoff while ensuring that playas would continue to function hydrologically to provide ecosystem services. Watershed management to minimize erosion and creations of vegetation buffers could be economical and effective conservation tools for playa wetlands.


Subject(s)
Geologic Sediments/chemistry , Metals/isolation & purification , Soil Pollutants , Water Pollutants, Chemical , Wetlands , Biodegradation, Environmental , Ecosystem , Nitrogen/isolation & purification , Plants , Poaceae , Rain , Soil/chemistry , Texas , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Water Quality
18.
Bull Environ Contam Toxicol ; 95(4): 465-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26253841

ABSTRACT

There are no known biological requirements for lead (Pb), and elevated Pb levels in birds can cause a variety of sub-lethal effects and mortality. Historic and current levels of Pb in mottled ducks (Anas fulvigula) suggest that environmental sources of Pb remain available on the upper Texas coast. Because of potential risks of Pb exposure among coexisting marsh birds, black-necked stilt (Himantopus mexicanus) blood Pb concentrations were measured during the breeding season. Almost 80 % (n = 120) of 152 sampled stilts exceeded the background threshold (>20 µg/dL) for Pb exposure. However, blood Pb concentrations did not vary by age or gender, and toxic or potentially lethal concentrations were rare (<5 %). Consistent, low-level blood Pb concentrations of black-necked stilts in this study suggest the presence of readily bioavailable sources of Pb, although potential impacts on local stilt populations remain unclear.


Subject(s)
Charadriiformes/metabolism , Ducks/metabolism , Lead/blood , Animals , Breeding , Female , Male , Risk Assessment , Seasons , Texas
20.
Environ Sci Technol ; 48(8): 4282-8, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24635683

ABSTRACT

Watershed cultivation and subsequent soil erosion remains the greatest threat to the service provisioning of playa wetlands in the High Plains. The U.S. Department of Agriculture's (USDA) Conservation Reserve Program (CRP) plants perennial vegetation cover on cultivated lands including playa watersheds, and therefore, the program influences sediment deposition and accumulation in playas. Our objective was to measure the effects of the CRP on sediment deposition by comparing sediment depth and present/historic size characteristics in 258 playas among three High-Plains subregions (northern, central, and southern) and the three dominant watershed types: cropland, CRP, and native grassland. Sediment depth and resultant volume loss for CRP playas were 40% and 57% lower than cropland playas, but 68% and 76% greater than playas in native grassland. Playas in CRP had remaining volumes exceeding those of cropland playas. Grassland playas had nearly three times more original playa volume and 122% greater wetland area than CRP playas. Overall, playas were larger in the south than other subregions. Sediment depth was also three times greater in the south than the north, which resulted in southern playas losing twice as much total volume as northern playas. However, the larger southern playas provide more remaining volume per playa than those in other subregions. The results of this study demonstrate the importance of proper watershed management in preserving playa wetland ecosystem service provisioning in the High Plains. Furthermore, we identify regional differences in playas that may influence management decisions and provide valuable insight to conservation practitioners trying to maximize wetland services with limited resources.


Subject(s)
Agriculture , Conservation of Natural Resources , Wetlands , Analysis of Variance , Geography , Geologic Sediments/chemistry , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...