Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 366(6463): 346-351, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31624209

ABSTRACT

A nearly 20-year hiatus in major seismic activity in southern California ended on 4 July 2019 with a sequence of intersecting earthquakes near the city of Ridgecrest, California. This sequence included a foreshock with a moment magnitude (M w) of 6.4 followed by a M w 7.1 mainshock nearly 34 hours later. Geodetic, seismic, and seismicity data provided an integrative view of this sequence, which ruptured an unmapped multiscale network of interlaced orthogonal faults. This complex fault geometry persists over the entire seismogenic depth range. The rupture of the mainshock terminated only a few kilometers from the major regional Garlock fault, triggering shallow creep and a substantial earthquake swarm. The repeated occurrence of multifault ruptures, as revealed by modern instrumentation and analysis techniques, poses a formidable challenge in quantifying regional seismic hazards.

2.
Science ; 364(6442): 767-771, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31000593

ABSTRACT

Earthquakes follow a well-known power-law size relation, with smaller events occurring much more often than larger events. Earthquake catalogs are thus dominated by small earthquakes yet are still missing a much larger number of even smaller events because of signal fidelity issues. To overcome these limitations, we applied a template-matching detection technique to the entire waveform archive of the regional seismic network in Southern California. This effort resulted in a catalog with 1.81 million earthquakes, a 10-fold increase, which provides important insights into the geometry of fault zones at depth, foreshock behavior and nucleation processes, and earthquake-triggering mechanisms. The rich detail resolved in this type of catalog will facilitate the next generation of analyses of earthquakes and faults.

3.
Sci Adv ; 3(3): e1601946, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28345036

ABSTRACT

The trifurcation area of the San Jacinto fault zone has produced more than 10% of all earthquakes in southern California since 2000, including the June 2016 Mw (moment magnitude) 5.2 Borrego Springs earthquake. In this area, the fault splits into three subparallel strands and is associated with broad VP /VS anomalies. We synthesize spatiotemporal properties of historical background seismicity and aftershocks of the June 2016 event. A template matching technique is used to detect and locate more than 23,000 aftershocks, which illuminate highly complex active fault structures in conjunction with a high-resolution regional catalog. The hypocenters form dipping seismicity lineations both along strike and nearly orthogonal to the main fault, and are composed of interlaced strike-slip and normal faults. The primary faults change dip with depth and become listric by transitioning to a dip of ~70° near a depth of 10 km. The Mw 5.2 Borrego Springs earthquake and past events with M > 4.0 occurred on the main faults, whereas most of the low-magnitude events are located in a damage zone (several kilometers wide) at seismogenic depths. The lack of significant low-magnitude seismicity on the main fault traces suggests that they do not creep. The very high rate of aftershocks likely reflects the large geometrical fault complexity and perhaps a relatively high stress due to a significant length of time elapsed since the last major event. The results provide important insights into the physics of faulting near the brittle-ductile transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...