Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14703, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679368

ABSTRACT

Reversible and programmable shaping of surfaces promises wide-ranging applications in tunable optics and acoustic metasurfaces. Based on acoustic radiation pressure, contactless and real-time deformation of fluid interface can be achieved. This paper presents an experimental and numerical study to characterize the spatiotemporal properties of the deformation induced by acoustic radiation pressure. Using localized ultrasonic excitation, we report the possibility of on-demand tailoring of the induced protrusion at water-air interface in space and time, depending on the shape of the input pressure field. The experimental method used to measure the deformation of the water surface in space and time shows close agreement with simulations. We demonstrate that acoustic radiation pressure allows shaping protrusion at fluid interfaces, which could be changed into a various set of spatiotemporal distributions, considering simple parameters of the ultrasonic excitation. This paves the way for novel approach to design programmable space and time-dependent gratings at fluid interfaces.

2.
Article in English | MEDLINE | ID: mdl-31634126

ABSTRACT

In this article, we report on the analysis of the extended acoustic signature obtained from the pulse-echo method to evaluate the B/A nonlinear parameter in fluids. In the known form of the method, the first acoustic tone burst from the reflector is used for the parameter measurement. The multiple pulse-echo method (MPEM) makes use of several tone bursts coming from the reflector back wall. The distortion ratio can be increased when the source frequency is tuned to a reflector resonance. The repercussion of this increase in the measurement of the nonlinear parameter B/A is investigated. As a practical result, this work suggests that the fluid volume required for the measurement can be reduced.

3.
J Acoust Soc Am ; 139(6): 3296, 2016 06.
Article in English | MEDLINE | ID: mdl-27369154

ABSTRACT

Phononic crystals made of piezoelectric composites with 1-3 connectivity are studied theoretically and experimentally. It is shown that they present Bragg band gaps that depend on the periodic electrical boundary conditions. These structures have improved properties compared to phononic crystals composed of bulk piezoelectric elements, especially the existence of larger band gaps and the fact that they do not require severe constraints on their aspect ratios. Experimental results present an overall agreement with the theoretical predictions and clearly show that the pass bands and stop bands of the device under study are easily tunable by only changing the electrical boundary conditions applied on each piezocomposite layer.

4.
Ultrasonics ; 72: 34-41, 2016 12.
Article in English | MEDLINE | ID: mdl-27470205

ABSTRACT

This study presents the thorough investigation of the second harmonic generation scenario in a three fluid layer system. An emphasis is on the evaluation of the nonlinear parameter B/A in each layer from remote measurements. A theoretical approach of the propagation of a finite amplitude acoustic wave in a multilayered medium is developed. In the frame of the KZK equation, the weak nonlinearity of the media, attenuation and diffraction effects are computed for the fundamental and second harmonic waves propagating back and forth in each of the layers of the system. The model uses a gaussian expansion to describe the beam propagation in order to quantitatively evaluate the contribution of each part of the system (layers and interfaces) to its nonlinearity. The model is validated through measurements on a water/aluminum/water system. Transmission as well as reflection configurations are studied. Good agreement is found between the theoretical results and the experimental data. The analysis of the second harmonic field sources measured by the transducers from outside the stratified medium highlights the factors that favor the cumulative effects.

5.
Ultrasonics ; 63: 23-30, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26117145

ABSTRACT

Lead zirconate titanate (PZT) ceramics are the dominant piezoelectric elements for non-destructive evaluation (NDE) and ultrasonic transducers devices. However, the presence of lead content may impose the scientific community to develop lead-free ceramics, concerning human health and environmental safety. During the past ten years, many contributions have highlighted the potential properties of complex compositions like LiNbO3, LiTaO3 and LiSbO3 in the lead-free (K0.5Na0.5)NbO3 KNN system. In this context, for the first time, the practical applications and the effectiveness of simply undoped (K0.5Na0.5)NbO3 (KNN) ceramics are investigated. KNN powder is prepared by conventional solid state mixed oxide route. Ceramics of this material are prepared using conventional sintering (CS) and spark plasma sintering (SPS). Thickness coupling factor kt of 44-46%, planar coupling factor kp of 29-45%, relative permittivity at constant strain ε33,r(S) of 125-243 and acoustic impedance Z of 23-30 MRay are obtained for these two kinds of undoped KNN ceramics. Both ceramics are used to build single-element ultrasonic transducers. Relative bandwidth of 49-78% and insertion loss of -27 and -51dB are obtained for SPS and CS transducers, respectively. These results are suitable for use in non-destructive evaluation. The effectiveness of undoped KNN is evaluated using the KLM model, and compared to standard PZT based probe. Finally, chemical aging test of undoped KNN has demonstrated its stability in water.

6.
Article in English | MEDLINE | ID: mdl-25073139

ABSTRACT

The dispersion curves of a phononic crystal (PC) based on a hollow metallic structure are presented. They exhibit a negative refraction dispersion branch and perfect refractive index matching with the surrounding water, leading to focusing capability. Numerical and experimental results are reported for a flat PC lens. The characteristics of the focal spot (intensity, dimensions, etc.) are numerically and experimentally investigated with the goal of finding the frequency of the optimal imaging performance.

7.
Ultrasonics ; 52(5): 622-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22325847

ABSTRACT

In many industrial processes where online control is necessary such as in the food industry, the real time monitoring of visco-elastic properties is essential to ensure the quantity of production. Acoustic methods have shown that reliable properties could be obtained from measurements of velocity and attenuation. This paper proposes a simple, real time ultrasound method for monitoring linear medium properties (phase velocity and attenuation) that vary in time. The method is based on a pulse echo measurement and is self-calibrated. Results on a silica gel are reported and the importance of taking into account the changes of the mechanical loading on the front face of the transducer will be shown. This is done through a modification of the emission and reception transfer parameters. The simultaneous measurement of the input and output currents and voltages enables these parameters to be calculated during the reaction. The variations of the transfer parameters are in the order of 6% and predominate other effects. The evolution of the ultrasonic longitudinal wave phase velocity and attenuation as a function of time allows the characteristic times of the chemical reaction to be determined. The results are well correlated with the gelation time measured by rheological method at low frequency.


Subject(s)
Gels/chemistry , Rheology/methods , Silicon Dioxide/chemistry , Ultrasonics , Algorithms , Calibration , Elasticity , Phase Transition , Quality Control , Transducers , Vibration , Viscosity
8.
Article in English | MEDLINE | ID: mdl-19213643

ABSTRACT

The design of transducers requires a clear understanding of their electromechanical behavior. This involves precise linear modeling as well as characterization. With the development of novel techniques such as harmonic imaging as well as high-power applications, nonlinear aspects must also be taken into account. In this study, harmonic generation in the mechanical displacement of a piezoceramic rod under high sinusoidal electric fields was measured. Theoretically, the nonlinearity can come from various sources: dielectric, mechanical, and electromechanical. The nonlinearity coming from external sources being eliminated or taken into account, it is shown here that the analysis, over a wide frequency range, of 2 parameters related to the harmonic distortion enables the respective identification of these sources and, at the same time, the evaluation of third-order constants of the material.

9.
J Acoust Soc Am ; 111(5 Pt 1): 2034-9, 2002 May.
Article in English | MEDLINE | ID: mdl-12051423

ABSTRACT

Acoustic scattering from a finite air-filled elastic cylindrical shell, immersed in water, is investigated. The shell is made of stainless steel and has a thickness to outer radius ratio of 17%. The considered dimensionless frequency range extends over 7 << k1a << 22 (k1: wave number in water, a: outer radius). Bistatic measurements are carried out to identify vibration modes related to the phase matching of the first guided wave, T0, propagating on the shell. Both transducers, the emitter and the receiver, are positioned at the same angular distance with regard to the normal axis of the shell. The emitter transducer is fixed at a given position. In order to identify circumferential modes of vibration, the receiver transducer is made to rotate in the azimuthal plane, normal to the shell axis. Results obtained are plotted in functions of dimensionless frequency and azimuthal angle. Vibration modes along the shell's length are identified by moving the receiver transducer parallel to the shell axis. In this case, results are plotted in functions of dimensionless frequency and axial wave number. The experimental investigation is corroborated by theoretical results obtained from approximate calculations for thick finite cylindrical shells [Scot F. Morse et al., J. Acoust. Soc. Am. 103, 785-794 (1998)]. The evolution of the mode position with respect to the incidence angle is discussed so as to clarify peak patterns in backscattered resonance spectra.

SELECTION OF CITATIONS
SEARCH DETAIL
...