Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Endocrinol ; 72(3): 175-85, 1990 Sep 10.
Article in English | MEDLINE | ID: mdl-2289630

ABSTRACT

The degradation products generated from A14 and B26 125I-labelled insulins in liver endosomes in vivo and in vitro have been isolated by high-performance liquid chromatography and cleavages in the B chain have been identified by automated radiosequence analysis. In rats sacrificed various times after injection of each of the 125I-labelled insulins, two major degradation products slightly less hydrophobic than intact iodoinsulins were identified; these accounted, at 8 min. for about 45% (A14 125I-labelled insulin) and 15% (B26 125I-labelled insulin) of the total radioactivity recovered, respectively. The products generated from A14 125I-labelled insulin contained an intact A chain, whereas those generated from B26 125I-labelled insulin contained a B chain cleaved at the B16-B17 bond. With B26 125I-labelled insulin, two minor products, with cleavages at the B23-B24 and B24-B25 bonds, were also observed. In vivo chloroquine treatment did not alter the nature but caused a decrease in the amount of insulin degradation products associated with endosomes. When endosomal fractions isolated from iodoinsulin injected rats were incubated at 30 degrees C in isotonic KCl, a rapid degradation of iodoinsulin, maximal at pH 6, was observed. With A14 125I-labelled insulin, the two major degradation products identified in vivo were generated along with monoiodotyrosine, but with B26 125I-labelled insulin monoiodotyrosine was the main product formed. Addition of ATP, presumably by decreasing the endosomal pH, shifted the medium pH for maximal iodoinsulin degradation to about 7-8. These studies have allowed a direct identification of two previously suggested cleavage sites in the B chain. They have also shown that the degradation products generated in cell-free endosomes under conditions that promote endosomal acidification are similar to those identified in vivo.


Subject(s)
Insulin/metabolism , Liver/metabolism , Animals , Chloroquine/pharmacology , Chromatography, High Pressure Liquid , Golgi Apparatus/metabolism , Insulysin/metabolism , Liver/drug effects , Male , Peptide Fragments/analysis , Rats , Rats, Inbred Strains , Subcellular Fractions/metabolism
2.
Proc Natl Acad Sci U S A ; 87(12): 4675-9, 1990 Jun.
Article in English | MEDLINE | ID: mdl-1693775

ABSTRACT

Labeling studies of Torpedo marmorata nicotinic acetylcholine receptor with the noncompetitive channel blocker [3H]chlorpromazine have led to the initial identification of amino acids plausibly participating to the walls of the ion channel on the alpha, beta, and delta subunits. We report here results obtained with the gamma subunit, which bring additional information on the structure of the channel. After photolabeling of the membrane-bound receptor under equilibrium conditions in the presence of agonist and with or without phencyclidine (a specific ligand for the high-affinity site for noncompetitive blockers), the purified labeled gamma subunit was digested with trypsin, and the resulting fragments were fractionated by HPLC. Sequence analysis of peptide mixtures containing various amounts of highly hydrophobic fragments showed that three amino acids are labeled by [3H]chlorpromazine in a phencyclidine-sensitive manner: Thr-253, Ser-257, and Leu-260. These residues all belong to the hydrophobic and putative transmembrane region MII of the gamma subunit. Their distribution along the sequence is consistent with an alpha-helical organization of this segment. The [3H]chlorpromazine-labeled amino acids are conserved at homologous positions in the known sequences of other ligand-gated ion channels and may, thus, play a critical role in ion-transport mechanisms.


Subject(s)
Chlorpromazine/metabolism , Ion Channels/metabolism , Receptors, Cholinergic/metabolism , Allosteric Site , Amino Acid Sequence , Animals , Binding Sites , Macromolecular Substances , Models, Structural , Molecular Sequence Data , Peptide Fragments/isolation & purification , Protein Conformation , Torpedo , Tritium , Trypsin
3.
Biochem J ; 263(3): 929-35, 1989 Nov 01.
Article in English | MEDLINE | ID: mdl-2532007

ABSTRACT

A 32 kDa protein isolated from human mononuclear cells is a member of the lipocortin family, a new group of Ca2+-dependent lipid-binding proteins thought to be involved in the regulation of phospholipase A2, in exocytosis and in membrane-cytoskeleton interactions. Purification of this protein was based on its ability to associate with membrane phospholipids in a Ca2+-dependent manner and its capacity to inhibit purified phospholipase A2 from pig pancreas. Using immunological detection, we show that it is present in various cells involved in the inflammatory and coagulation processes. We present extensive amino acid data that strongly suggest that this protein is identical with a recently described inhibitor of blood coagulation, with endonexin II and with lipocortin V. Sequence alignment with other known proteins show a significant degree of homology with lipocortins I and II, the substrates of the epidermal-growth-factor receptor tyrosine kinase and the oncogene pp60src tyrosine kinase respectively, and with protein II. The possible physiological role of this 32 kDa lipocortin is discussed.


Subject(s)
Anticoagulants , Calcium-Binding Proteins/metabolism , Leukocytes, Mononuclear/analysis , Amino Acid Sequence , Annexin A5 , Blotting, Western , Calcium-Binding Proteins/blood , Cell Membrane/metabolism , Escherichia coli/metabolism , Molecular Sequence Data , Molecular Weight , Phospholipids/metabolism
4.
Eur J Biochem ; 169(3): 539-46, 1987 Dec 15.
Article in English | MEDLINE | ID: mdl-3319613

ABSTRACT

Flavocytochrome b2 (L-lactate dehydrogenase) from baker's yeast is composed of two structural and functional domains. Its first 100 residues constitute the heme-binding core, which is homologous to cytochrome b5 [B. Guiard, O. Groudinsky & F. Lederer (1974) Proc. Natl Acad. Sci. USA 71, 2539-2543]. We report here the amino acid sequence of the heme-binding domain isolated by tryptic proteolysis of Hansenula anomala flavocytochrome b2. The sequence was established by automated degradation of the whole fragment and of peptides obtained by CNBr cleavage at the unique tryptophan and by proteolysis with thermolysin and endoproteinase Lys C. As isolated, the domain consists of 84 residues without any sulfur amino acids. It shows 49 identities with the heme-binding domain from Saccharomyces cerevisiae and 28 with beef microsomal cytochrome b5. Using the recently published three-dimensional structure of S. cerevisiae flavocytochrome b2 [Z-x. Xia, N. Shamala, P. H. Bethge, L. W. Lim, H. D. Bellamy, N. H. Xuong, F. Lederer and F. S. Mathews (1987) Proc. Natl Acad. Sci. USA 84, 2629-2633], it can be seen that there are only positively charged side chains close to the accessible heme edge, the only negative charges in that area being those of the heme propionates. The implications of this result are discussed in the light of Salemme's model for the cytochrome b5/cytochrome c complex [F. R. Salemme (1976) J. Mol. Biol. 102, 563-568].


Subject(s)
Cytochrome b Group/analysis , Heme/metabolism , L-Lactate Dehydrogenase/analysis , Pichia/enzymology , Saccharomycetales/enzymology , Amino Acid Sequence , Animals , Binding Sites , Cattle , Cytochromes b5 , L-Lactate Dehydrogenase (Cytochrome) , Microsomes, Liver/enzymology , Molecular Sequence Data , Saccharomyces cerevisiae/enzymology
5.
Biochemistry ; 26(9): 2410-8, 1987 May 05.
Article in English | MEDLINE | ID: mdl-3607023

ABSTRACT

The membrane-bound acetylcholine receptor from Torpedo marmorata was photolabeled by the noncompetitive channel blocker [3H]chlorpromazine under equilibrium conditions in the presence of the agonist carbamoylcholine. The amount of radioactivity incorporated into all subunits was reduced by addition of phencyclidine, a specific ligand for the high-affinity site for noncompetitive blockers. The labeled beta chain was purified and digested with trypsin or CNBr, and the resulting fragments were fractionated by high-performance liquid chromatography. Sequence analysis resulted in the identification of Ser-254 and Leu-257 as residues labeled by [3H]chlorpromazine in a phencyclidine-sensitive manner. These residues are located in the hydrophobic and potentially transmembrane segment M II of the beta chain, a region homologous to that containing the chlorpromazine-labeled Ser-262 in the delta chain [Giraudat, J., Dennis, M., Heidmann, T., Chang, J. Y., & Changeux, J.-P. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2719-2723]. These results show that homologous regions of different receptor subunits contribute to the unique high-affinity site for noncompetitive blockers, a finding consistent with the location of this site on the axis of symmetry of the receptor molecule.


Subject(s)
Chlorpromazine/metabolism , Receptors, Cholinergic/metabolism , Amino Acid Sequence , Amino Acids/analysis , Animals , Carbachol/pharmacology , Cell Membrane/metabolism , Chlorpromazine/pharmacology , Macromolecular Substances , Models, Molecular , Peptide Fragments/analysis , Phencyclidine/pharmacology , Receptors, Cholinergic/drug effects , Torpedo
6.
Biochemistry ; 26(7): 1940-8, 1987 Apr 07.
Article in English | MEDLINE | ID: mdl-3297136

ABSTRACT

L-Glutamine:D-fructose-6-phosphate amidotransferase (glucosamine synthetase) has been purified to homogeneity from Escherichia coli. A subunit molecular weight of 70,800 was estimated by gel electrophoresis in sodium dodecyl sulfate. Pure glucosamine synthetase did not exhibit detectable NH3-dependent activity and did not catalyze the reverse reaction, as reported for more impure preparations [Gosh, S., Blumenthal, H. J., Davidson, E., & Roseman, S. (1960) J. Biol. Chem. 235, 1265]. The enzyme has a Km of 2 mM for fructose 6-phosphate, a Km of 0.4 mM for glutamine, and a turnover number of 1140 min-1. The amino-terminal sequence confirmed the identification of residues 2-26 of the translated E. coli glmS sequence [Walker, J. E., Gay, J., Saraste, M., & Eberle, N. (1984) Biochem. J. 224, 799]. Methionine-1 is therefore removed by processing in vivo, leaving cysteine as the NH2-terminal residue. The enzyme was inactivated by the glutamine analogue 6-diazo-5-oxo-L-norleucine (DON) and by iodoacetamide. Glucosamine synthetase exhibited half-of-the-sites reactivity when incubated with DON in the absence of fructose 6-phosphate. In its presence, inactivation with [6-14C]DON was accompanied by incorporation of 1 equiv of inhibitor per enzyme subunit. From this behavior, a dimeric structure was tentatively assigned to the native enzyme. The site of reaction with DON was the NH2-terminal cysteine residue as shown by Edman degradation.


Subject(s)
Escherichia coli/enzymology , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/isolation & purification , Glutamine/metabolism , Transaminases/isolation & purification , Amino Acids/analysis , Binding Sites , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Kinetics , Molecular Weight , Protein Binding , Sulfhydryl Reagents/pharmacology
7.
Eur J Biochem ; 152(2): 419-28, 1985 Oct 15.
Article in English | MEDLINE | ID: mdl-3902473

ABSTRACT

Each subunit of baker's yeast flavocytochrome b2 can be selectively cleaved by proteases into two fragments, amino-terminal fragment alpha and carboxy-terminal fragment beta. The primary structure of the former has been reported before [Ghrir, B., Becam, A. M. & Lederer, F. (1984) Eur. J. Biochem. 139, 59-74]. The amino acid sequence of the 197-residue fragment beta has now been established. The fragment was cleaved with cyanogen bromide; the three peptides thus obtained were submitted to digestions with Staphylococcus aureus V8 protease, chymotrypsin and trypsin, sometimes after succinylation. The complete fragment was also submitted to tryptic cleavage after citraconylation. Peptides were separated by thin-layer finger-printing or high-pressure liquid chromatography. They were mostly sequenced in a liquid-phase sequenator. The 511-residue amino acid sequence of the mature protein is thus completely established. Secondary structure predictions indicate an alternation of helical and extended structure, with a higher percentage of the former. Comparisons with other flavoproteins do not detect any significant sequence similarity.


Subject(s)
L-Lactate Dehydrogenase/analysis , Saccharomyces cerevisiae/enzymology , Amino Acid Sequence , Chemical Phenomena , Chemistry , Chymotrypsin , Cyanogen Bromide , Hydrolysis , L-Lactate Dehydrogenase (Cytochrome) , Peptide Fragments/analysis , Protein Conformation , Trypsin
SELECTION OF CITATIONS
SEARCH DETAIL
...