Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 8(2): e1002506, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22346763

ABSTRACT

For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , Flowers/growth & development , Flowers/genetics , Gene Regulatory Networks/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Mutation , Oxylipins/metabolism , Phenotype , Plant Nectar/genetics , Plants, Genetically Modified/genetics , Pollen/genetics , Pollen/growth & development , Sesquiterpenes/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Plant Physiol ; 153(3): 1293-310, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20463089

ABSTRACT

When attacked by insects, plants release mixtures of volatile compounds that are beneficial for direct or indirect defense. Natural variation of volatile emissions frequently occurs between and within plant species, but knowledge of the underlying molecular mechanisms is limited. We investigated intraspecific differences of volatile emissions induced from rosette leaves of 27 accessions of Arabidopsis (Arabidopsis thaliana) upon treatment with coronalon, a jasmonate mimic eliciting responses similar to those caused by insect feeding. Quantitative variation was found for the emission of the monoterpene (E)-beta-ocimene, the sesquiterpene (E,E)-alpha-farnesene, the irregular homoterpene 4,8,12-trimethyltridecatetra-1,3,7,11-ene, and the benzenoid compound methyl salicylate. Differences in the relative emissions of (E)-beta-ocimene and (E,E)-alpha-farnesene from accession Wassilewskija (Ws), a high-(E)-beta-ocimene emitter, and accession Columbia (Col-0), a trace-(E)-beta-ocimene emitter, were attributed to allelic variation of two closely related, tandem-duplicated terpene synthase genes, TPS02 and TPS03. The Ws genome contains a functional allele of TPS02 but not of TPS03, while the opposite is the case for Col-0. Recombinant proteins of the functional Ws TPS02 and Col-0 TPS03 genes both showed (E)-beta-ocimene and (E,E)-alpha-farnesene synthase activities. However, differential subcellular compartmentalization of the two enzymes in plastids and the cytosol was found to be responsible for the ecotype-specific differences in (E)-beta-ocimene/(E,E)-alpha-farnesene emission. Expression of the functional TPS02 and TPS03 alleles is induced in leaves by elicitor and insect treatment and occurs constitutively in floral tissues. Our studies show that both pseudogenization in the TPS family and subcellular segregation of functional TPS enzymes control the variation and plasticity of induced volatile emissions in wild plant species.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Alleles , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Feeding Behavior , Intramolecular Lyases/metabolism , Multienzyme Complexes/metabolism , Pyrophosphatases/metabolism , Terpenes/metabolism , Acyclic Monoterpenes , Alkenes/chemistry , Alkenes/metabolism , Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/genetics , Amino Acid Sequence , Animals , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Base Sequence , Cytosol/enzymology , Erythritol/analogs & derivatives , Erythritol/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Insecta , Intramolecular Lyases/chemistry , Intramolecular Lyases/genetics , Metabolic Networks and Pathways , Mevalonic Acid/metabolism , Molecular Sequence Data , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Plastids/enzymology , Promoter Regions, Genetic/genetics , Protein Transport , Pyrophosphatases/chemistry , Pyrophosphatases/genetics , Recombinant Proteins/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism , Subcellular Fractions/enzymology , Sugar Phosphates/metabolism , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...