Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Basic Res Cardiol ; 117(1): 13, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260914

ABSTRACT

Cancer therapies with anthracyclines have been shown to induce cardiovascular complications. The aims of this study were to establish an in vitro induced pluripotent stem cell model (iPSC) of anthracycline-induced cardiotoxicity (ACT) from patients with an aggressive form of B-cell lymphoma and to examine whether doxorubicin (DOX)-treated ACT-iPSC cardiomyocytes (CM) can recapitulate the clinical features exhibited by patients, and thus help uncover a DOX-dependent pathomechanism. ACT-iPSC CM generated from individuals with CD20+ B-cell lymphoma who had received high doses of DOX and suffered cardiac dysfunction were studied and compared to control-iPSC CM from cancer survivors without cardiac symptoms. In cellular studies, ACT-iPSC CM were persistently more susceptible to DOX toxicity including augmented disorganized myofilament structure, changed mitochondrial shape, and increased apoptotic events. Consistently, ACT-iPSC CM and cardiac fibroblasts isolated from fibrotic human ACT myocardium exhibited higher DOX-dependent reactive oxygen species. In functional studies, Ca2+ transient amplitude of ACT-iPSC CM was reduced compared to control cells, and diastolic sarcoplasmic reticulum Ca2+ leak was DOX-dependently increased. This could be explained by overactive CaMKIIδ in ACT CM. Together with DOX-dependent augmented proarrhythmic cellular triggers and prolonged action potentials in ACT CM, this suggests a cellular link to arrhythmogenic events and contractile dysfunction especially found in ACT engineered human myocardium. CamKIIδ inhibition prevented proarrhythmic triggers in ACT. In contrast, control CM upregulated SERCA2a expression in a DOX-dependent manner, possibly to avoid heart failure conditions. In conclusion, we developed the first human patient-specific stem cell model of DOX-induced cardiac dysfunction from patients with B-cell lymphoma. Our results suggest that DOX-induced stress resulted in arrhythmogenic events associated with contractile dysfunction and finally in heart failure after persistent stress activation in ACT patients.


Subject(s)
Heart Diseases , Heart Failure , Induced Pluripotent Stem Cells , Lymphoma, B-Cell , Neoplasms , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Doxorubicin/metabolism , Doxorubicin/toxicity , Heart Diseases/metabolism , Heart Failure/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Myocytes, Cardiac/metabolism , Neoplasms/metabolism
2.
Stem Cell Res ; 23: 127-131, 2017 08.
Article in English | MEDLINE | ID: mdl-28925362

ABSTRACT

Krueppel-like factor 15 (KLF15) is abundantly expressed in liver, kidney, and muscle, including myocardium. In the adult heart KLF15 is important to maintain homeostasis and to repress hypertrophic remodeling. We generated a homozygous hESC KLF15 knockout (KO) line using paired CRISPR/Cas9n. KLF15-KO cells maintained full pluripotency and differentiation potential as well as genomic integrity. We demonstrated that KLF15-KO cells can be differentiated into morphologically normal cardiomyocytes turning them into a valuable tool for studying human KLF15-mediated mechanisms resulting in human cardiac dysfunction.


Subject(s)
CRISPR-Cas Systems/genetics , Cell Culture Techniques/methods , Gene Knockout Techniques , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Kruppel-Like Transcription Factors/genetics , Myocytes, Cardiac/cytology , Nuclear Proteins/genetics , Cell Line , Homozygote , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...