Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 5(209): 209ra151, 2013 Oct 30.
Article in English | MEDLINE | ID: mdl-24174327

ABSTRACT

We report the discovery and translational therapeutic efficacy of a peptide with potent, balanced co-agonism at both of the receptors for the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This unimolecular dual incretin is derived from an intermixed sequence of GLP-1 and GIP, and demonstrated enhanced antihyperglycemic and insulinotropic efficacy relative to selective GLP-1 agonists. Notably, this superior efficacy translated across rodent models of obesity and diabetes, including db/db mice and ZDF rats, to primates (cynomolgus monkeys and humans). Furthermore, this co-agonist exhibited synergism in reducing fat mass in obese rodents, whereas a selective GIP agonist demonstrated negligible weight-lowering efficacy. The unimolecular dual incretins corrected two causal mechanisms of diabesity, adiposity-induced insulin resistance and pancreatic insulin deficiency, more effectively than did selective mono-agonists. The duration of action of the unimolecular dual incretins was refined through site-specific lipidation or PEGylation to support less frequent administration. These peptides provide comparable pharmacology to the native peptides and enhanced efficacy relative to similarly modified selective GLP-1 agonists. The pharmacokinetic enhancement lessened peak drug exposure and, in combination with less dependence on GLP-1-mediated pharmacology, avoided the adverse gastrointestinal effects that typify selective GLP-1-based agonists. This discovery and validation of a balanced and high-potency dual incretin agonist enables a more physiological approach to management of diseases associated with impaired glucose tolerance.


Subject(s)
Haplorhini/metabolism , Incretins/pharmacology , Rodentia/metabolism , Acylation/drug effects , Adolescent , Adult , Aged , Animals , Diabetes Mellitus, Type 2/drug therapy , Exenatide , Female , Gastric Inhibitory Polypeptide/administration & dosage , Gastric Inhibitory Polypeptide/pharmacology , Glucagon-Like Peptide 1/administration & dosage , Glucagon-Like Peptide 1/analogs & derivatives , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide-1 Receptor , Glucose Tolerance Test , Humans , Hyperglycemia/drug therapy , Incretins/administration & dosage , Incretins/therapeutic use , Insulin/metabolism , Liraglutide , Male , Mice , Middle Aged , Peptides/pharmacology , Rats , Receptors, Gastrointestinal Hormone , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Treatment Outcome , Venoms/pharmacology , Weight Loss/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...