Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 643: 123211, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37422143

ABSTRACT

Citrate buffers are commonly utilized in the field of biomolecule stabilization. We investigate their applicability in the frozen state within a range of initial pHs (2.5 to 8.0) and concentrations (0.02 to 0.60 M). Citrate buffer solutions subjected to various cooling and heating temperatures are examined in terms of the freezing-induced acidity changes, revealing that citrate buffers acidify upon cooling. The acidity is assessed with sulfonephthalein molecular probes frozen in the samples. Optical cryomicroscopy combined with differential scanning calorimetry was employed to investigate the causes of the observed acidity changes. The buffers partly crystallize and partly vitrify in the ice matrix; these processes influence the resulting pH and allow designing the optimal storage temperatures in the frozen state. The freezing-induced acidification apparently depends on the buffer concentration; at each pH, we suggest pertinent concentration, at which freezing causes minimal acidification.


Subject(s)
Citrates , Freezing , Buffers , Hydrogen-Ion Concentration , Freeze Drying , Calorimetry, Differential Scanning
2.
J Pharm Sci ; 112(1): 51-60, 2023 01.
Article in English | MEDLINE | ID: mdl-36279956

ABSTRACT

In this work we use Raman spectroscopy for protein characterization in the frozen state. We investigate the behavior of frozen therapeutic monoclonal antibody IgG1 formulation upon thawing by Raman spectroscopy. Secondary and tertiary structure of the protein in three different mab formulations in the frozen state are followed through observation of marker bands for α-helix, ß-sheet and random coil. We identify the tyrosine intensity ratio I856/I830 as a marker for mab aggregation. Upon fast cooling (40 °C/min) to -80 °C we observe a significant increase of random coil and α -helical structures, while this is not the case for slower cooling (20 °C/min) to -80 °C. Most changes in the protein's secondary structure are observed in the course of thawing in the range up to -20 °C, when passing through the glass transitions and cold-crystallization of the two types of freeze-concentrated solutions formed through macro- and microcryoconcentration. An increase of protein concentration and the addition of mannitol suppress secondary structural changes but do no impact on aggregation.


Subject(s)
Chemistry, Pharmaceutical , Mannitol , Freezing , Protein Structure, Secondary , Mannitol/chemistry , Antibodies, Monoclonal
3.
Int J Pharm X ; 4: 100109, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35024604

ABSTRACT

We examined the impact of monoclonal antibody (mAb) and buffer concentration, mimicking the cryoconcentration found upon freezing in a 2 L bottle, on mAb stability during frozen storage. Upon cryoconcentration, larger protein molecules and small excipient molecules freeze-concentrate differently, resulting in different protein to stabiliser ratios within a container. Understanding the impact of these shifted ratios on protein stability is essential. For two mAbs a set of samples with constant mAb (5 mg/mL) or buffer concentration (medium histidine/adipic acid) was prepared and stored for 6 months at -10 °C. Stability was evaluated via size-exclusion chromatography, flow imaging microscopy, UV/Vis spectroscopy at 350 nm, and protein A chromatography. Dynamic light scattering was used to determine kD values. Soluble aggregate levels were unaffected by mAb concentration, but increased with histidine concentration. No trend in optical density could be identified. In contrast, increasing mAb or buffer concentration facilitated the formation of subvisible particles. A trend towards attractive protein-protein interactions was seen with higher ionic strength. MAb oxidation levels were negatively affected by increasing histidine concentration, but became less with higher mAb concentration. Small changes in mAb and buffer composition had a significant impact on stability during six-month frozen storage. Thus, preventing cryoconcentration effects in larger freezing containers may improve long-term stability.

4.
J Pharm Sci ; 111(7): 1973-1983, 2022 07.
Article in English | MEDLINE | ID: mdl-35007568

ABSTRACT

There is a need for representative small volume devices that reflect monoclonal antibody (mAb) aggregation during freezing and thawing (FT) in large containers. We characterised two novel devices that aim to mimic the stress in rectangular 2 L bottles. The first scale-down device (SDD) consists of a 125 mL bottle surrounded by a 3D printed cover that manipulates heat exchange. The second device, a micro scale-down device (mSDD), adapts cooling and heating of 10 mL vials to extend stress time. MAb aggregation upon repeated FT was evaluated considering formation of higher molecular weight species, subvisible particles, and the increase in hydrodynamic radius, polydispersity index, and optical density at 350 nm. Three different mAb solutions were processed. Both an unshielded 125 mL bottle and the SDD can be used to predict aggregation during FT in 2 L bottles. In specific cases the unshielded 125 mL bottle underestimates whereas the SDD slightly overestimates soluble aggregate formation. The mSDD increases aggregation compared to 10 mL vials but is less representative than the SDD. Ultimately, both SDDs enable characterisation of protein sensitivity to large-scale FT with two orders of magnitude less volume and are superior to simply using smaller bottles.


Subject(s)
Antibodies, Monoclonal , Freezing
5.
Pharm Res ; 38(11): 1977-1989, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34729702

ABSTRACT

PURPOSE: Scale-down devices (SDD) are designed to simulate large-scale thawing of protein drug substance, but require only a fraction of the material. To evaluate the performance of a new SDD that aims to predict thawing in large-scale 2 L bottles, we characterised 3D temperature profiles and changes in concentration and density in comparison to 125 mL and 2 L bottles. Differences in diffusion between a monoclonal antibody (mAb) and histidine buffer after thawing were examined. METHODS: Temperature profiles at six distinct positions were recorded with type T thermocouples. Size-exclusion chromatography allowed quantification of mAb and histidine. Polysorbate 80 was quantified using a fluorescent dye assay. In addition, the solution's density at different locations in bottles and the SDD was identified. RESULTS: The temperature profiles in the SDD and the large-scale 2 L bottle during thawing were similar. Significant concentration gradients were detected in the 2 L bottle leading to marked density gradients. The SDD slightly overestimated the dilution in the top region and the maximum concentrations at the bottom. Fast diffusion resulted in rapid equilibration of histidine. CONCLUSION: The innovative SDD allows a realistic characterisation and helps to understand thawing processes of mAb solutions in large-scale 2 L bottles. Only a fraction of material is needed to gain insights into the thawing behaviour that is associated with several possible detrimental limitations.


Subject(s)
Antibodies, Monoclonal/chemistry , Excipients/chemistry , Buffers , Chemistry, Pharmaceutical , Drug Storage , Excipients/analysis , Freezing , Polysorbates/analysis , Polysorbates/chemistry
6.
Eur J Pharm Biopharm ; 163: 127-140, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33813056

ABSTRACT

In the pharmaceutical industry, cryoprotectants are added to buffer formulations to protect the active pharmaceutical ingredient from freeze- and thaw damage. We investigated the freezing and thawing of aqueous sodium citrate buffer with various cryoprotectants, specifically amino acids (cysteine, histidine, arginine, proline and lysine), disaccharides (trehalose and sucrose), polyhydric alcohols (glycerol and mannitol) and surfactants (polysorbate 20 and polysorbate 80). Hereby, we employed optical cryomicroscopy in combination with differential scanning calorimetry in the temperature range to -80 °C. The effect of cryoprotectants on the morphology of the ice crystals, the glass transition temperature and the initial melting temperature is presented. Some of the cryoprotectants have a significant impact on ice crystal size. Disaccharides restrict ice crystal growth, whereas surfactants and glycerol allow ice crystals to increase in size. Cysteine and mannitol cause dehydration after thawing. Either one or two glass transition temperatures were detected, where arginine, surfactants, glycerol, proline and lysine suppress the second, implying a uniform freeze-concentrated solution. The initial melting temperature of pure buffer solution can be shifted up by adding mannitol, both disaccharides and both surfactants; but down by glycerol, proline and lysine.


Subject(s)
Cryoprotective Agents/chemistry , Solutions/chemistry , Buffers , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Freezing/adverse effects , Microscopy , Transition Temperature , Vitrification
7.
Pharm Res ; 36(9): 132, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31286268

ABSTRACT

The statement in the caption to Fig. 1 "Data taken from reference (38)." (Kolhe P, Holding E, Lary A, Chico S, Singh SK. Large-scale freezing of biologics: understanding protein and solute concentration changes in a Cryovessel-part 2. Biopharm International. 2010;23(7):40-9) is erroneous.

8.
AAPS PharmSciTech ; 20(2): 72, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30631964

ABSTRACT

Cryoconcentration of an in-house IgG1 and number of aggregates in a formulation containing trehalose were determined in dependence on freezing protocol and volume. Morphology changes of ice crystals depending on cooling rates were captured by optical cryomicroscopy (OCM) images. UV-Vis and affinity chromatography (ALC) was used to determine protein content and size-exclusion chromatography (SEC) for detection of aggregates. Cooling to - 80°C rather than - 20°C is beneficial in avoiding hot spots of high protein concentration. An upscaling of 250 ml to 2 L bottles results in an up to fourfold increase of macroscopic cryoconcentration. There is no direct correlation between number of aggregates and macroscopic cryoconcentration. Aggregate formation of that specific mAb is not caused by macroscopic cryoconcentration but can be directly linked to microscopic cryoconcentration in between the ice dendrites. Slower cooling with set-point and storage temperatures below Tg' has proven to be advantageous for the prevention of aggregate formation. We reveal that the subcooling prior to freezing plays a key role in avoiding aggregates. The lower the solution is supercooled the more likely aggregates form. As a consequence, we suggest controlled initiation of the freezing process to avoid large supercooling.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Protein Aggregates , Proteins/analysis , Antibodies, Monoclonal/analysis , Chromatography, Gel , Freezing , Immunoglobulin G/analysis , Trehalose/chemistry
9.
Pharm Res ; 35(5): 101, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29556730

ABSTRACT

PURPOSE: This study addresses the effect of freezing and thawing on a therapeutic monoclonal antibody (mAb) solution and the corresponding buffer formulation. Particle formation, crystallization behaviour, morphology changes and cryo-concentration effects were studied after varying the freezing and thawing rates, buffer formulation and protein concentration. The impact of undergoing multiple freeze/thaw (FT)-cycles at controlled and uncontrolled temperature rates on mAb solutions was investigated in terms of particle formation. METHODS: Physicochemical characteristics were analysed by Differential Scanning Calorimetry whereas morphology changes are visualized by cryomicroscopy measurements. Micro Flow Imaging, Archimedes and Dynamic Light Scattering were used to investigate particle formation. RESULTS: Data retrieved in the present study emphasizes the damage caused by multiple FT-cyles and the need for sucrose as a cryoprotectant preventing cold-crystallization specifically at high protein concentrations. Low protein concentrations cause an increase of micron particle formation. Low freezing rates lead to a decreased particle number with increased particle diameter. CONCLUSION: The overall goal of this research is to gain a better understanding of the freezing and thawing behaviour of mAb solutions with the ultimate aim to optimize this process step by reducing the unwanted particle formation, which also includes protein aggregates.


Subject(s)
Antibodies, Monoclonal/chemistry , Drug Compounding/methods , Freezing/adverse effects , Immunologic Factors/chemistry , Protein Aggregates , Buffers , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Crystallization , Drug Stability , Drug Storage , Protein Stability , Sucrose/chemistry
10.
Sci Rep ; 7(1): 7470, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785030

ABSTRACT

Water is the most important plasticizer of biological and organic hydrophilic materials, which generally exhibit enhanced mechanical softness and molecular mobility upon hydration. The enhancement of the molecular dynamics upon mixing with water, which in glass-forming systems implies a lower glass transition temperature (T g ), is considered a universal result of hydration. In fact, even in the cases where hydration or humidification of an organic glass-forming sample result in stiffer mechanical properties, the molecular mobility of the sample almost always increases with increasing water content, and its T g decreases correspondingly. Here, we present an experimental report of a genuine antiplasticizing effect of water on the molecular dynamics of a small-molecule glass former. In detail, we show that addition of water to prilocaine, an active pharmaceutical ingredient, has the same effect as that of an applied pressure, namely, a decrease in mobility and an increase of T g . We assign the antiplasticizing effect to the formation of prilocaine-H 2 O dimers or complexes with enhanced hydrogen bonding interactions.

11.
J Chem Phys ; 145(21): 211923, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-28799359

ABSTRACT

Here we investigate the freezing and thawing properties of aqueous solutions in oil emulsions, with a particular focus on investigating the influence of the oil and surfactant and the stirring time of the emulsion. Specifically, we employ optical cryomicroscopy in combination with differential scanning calorimetry to study the phase behavior of emulsified 25 wt. % ammonium sulfate droplets in the temperature range down to 93 K. We conclude that the nucleation temperature does not vary with oil-surfactant combination, that is, homogeneous nucleation is probed. However, incomplete emulsification and non-unimodal size distribution of dispersed droplets very often result in heterogeneous nucleation. This in turn affects the distribution of freeze-concentrated solution and the concentration of the solid ice/ammonium sulfate mixture and, thus, the phase behavior at sub-freezing temperatures. For instance, the formation of letovicite at 183 K critically depends on whether the droplets have frozen heterogeneously or homogeneously. Hence, the emulsification technique can be a very strong technique, but it must be ensured that emulsification is complete, i.e., a unimodal size distribution of droplets near 15 µm has been reached. Furthermore, phase separation within the matrix itself or uptake of water from the air may impede the experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...